![EBK PHYSICS FOR SCIENTISTS AND ENGINEER](https://www.bartleby.com/isbn_cover_images/8220100454899/8220100454899_largeCoverImage.jpg)
Concept explainers
A projectile is launched from the point (x = 0, y = 0), with velocity
(a)
![Check Mark](/static/check-mark.png)
The values of the projectile distance
Answer to Problem 4.72AP
The table for the values of
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
Explanation of Solution
The initial position of the projectile is
The value of the acceleration due to gravity is
Write the formula to calculate the
Here,
In a vertical projectile the acceleration in
Substitute
Thus, the
Write the formula to calculate the
Here,
For the vertical projectile the acceleration in
Substitute
Thus, the
Write the formula to calculate the magnitude of the position vector
Substitute
For
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
Conclusion:
Therefore, the table for the values of
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
(b)
![Check Mark](/static/check-mark.png)
The distance is maximum when the position vector is perpendicular to the velocity.
Answer to Problem 4.72AP
The distance is maximum when the position vector is perpendicular to the velocity.
Explanation of Solution
The initial position of the projectile is
The velocity vector tells about the change in the position vector. If the velocity vector at particular point has a component along the position vector and the velocity vector makes an angle less than
For the position vector to be maximum the distance from the origin must be momentarily at rest or constant and the only possible situation for this is that the velocity vector makes an angle
Conclusion:
Therefore, the distance is maximum when the position vector is perpendicular to the velocity vector.
(c)
![Check Mark](/static/check-mark.png)
The magnitude of the maximum displacement.
Answer to Problem 4.72AP
The magnitude of the maximum displacement is
Explanation of Solution
The initial position of the projectile is
The expression for the position vector
Square both the sides of the above equation.
Differentiate the above expression with respect to
For the maxima condition to calculate the value the value of
Further solve the above expression for
Further solving the above quadratic equation the values of
From the table in Part (a) it is evident that after
Thus, the maximum value of
Substitute
Conclusion:
Therefore, the maximum distance is
(d)
![Check Mark](/static/check-mark.png)
The explanation for the method used in part (c) calculation.
Answer to Problem 4.72AP
The maxima and minima condition is used to calculate the maximum magnitude of the position vector.
Explanation of Solution
The initial position of the projectile is
The maximum or minimum value of any function is easily calculated using the Maxima and Minima condition.
For the part (c) first calculate the critical points by equating the differential of
The value of
Substitute the maximum value of
Conclusion:
Therefore, the maxima and minima condition is used to calculate the maximum magnitude of the position vector.
Want to see more full solutions like this?
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Please solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forward
- You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- No chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)