The balanced molecular, total ionic, and net ionic equations for the acid-base reaction between limestone and hydrochloric acid are to be written. Concept introduction: Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions and OH − ions. Weak acids and weak bases are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions and OH − ions. The driving force of the acid-base reaction is the formation of a gaseous product or precipitate in the reaction. There are three types of equations that are utilized to represent an ionic reaction: 1. Molecular equation 2. Total ionic equation 3. Net ionic equation The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented. Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
The balanced molecular, total ionic, and net ionic equations for the acid-base reaction between limestone and hydrochloric acid are to be written. Concept introduction: Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions and OH − ions. Weak acids and weak bases are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions and OH − ions. The driving force of the acid-base reaction is the formation of a gaseous product or precipitate in the reaction. There are three types of equations that are utilized to represent an ionic reaction: 1. Molecular equation 2. Total ionic equation 3. Net ionic equation The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented. Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
The balanced molecular, total ionic, and net ionic equations for the acid-base reaction between limestone and hydrochloric acid are to be written.
Concept introduction:
Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H+ ions and OH− ions.
Weak acids and weak bases are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H+ ions and OH− ions.
The driving force of the acid-base reaction is the formation of a gaseous product or precipitate in the reaction.
There are three types of equations that are utilized to represent an ionic reaction:
1. Molecular equation
2. Total ionic equation
3. Net ionic equation
The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented.
Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
There is an instrument in Johnson 334 that measures total-reflectance x-ray fluorescence (TXRF) to do elemental analysis (i.e., determine what elements are present in a sample). A researcher is preparing a to measure calcium content in a series of well water samples by TXRF with an internal standard of vanadium (atomic symbol: V). She has prepared a series of standard solutions to ensure a linear instrument response over the expected Ca concentration range of 40-80 ppm. The concentrations of Ca and V (ppm) and the instrument response (peak area, arbitrary units) are shown below. Also included is a sample spectrum. Equation 1 describes the response factor, K, relating the analyte signal (SA) and the standard signal (SIS) to their respective concentrations (CA and CIS).
Ca, ppm
V, ppm
SCa, arb. units
SV, arb. units
20.0
10.0
14375.11
14261.02
40.0
10.0
36182.15
17997.10
60.0
10.0
39275.74
12988.01
80.0
10.0
57530.75
14268.54
100.0…
A mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C.
H₂O(g) + C₁₂O(g) = 2 HOCl(g)
K = 0.0900 at 25°C
с
Calculate the equilibrium concentrations of each gas at 25 °C.
[H₂O]=
[C₁₂O]=
[HOCI]=
M
Σ
M
What units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?
Chapter 4 Solutions
ALEKS 360 for Silberberg Chemistry: The Molecular Nature of Matter and Change
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.