EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.59AP
The “Vomit Comet.” In microgravity astronaut training and equipment testing, NASA flies a KC135A aircraft along a parabolic flight path. As shown in Figure P4.59, the aircraft climbs from 24 000 ft to 31 000 ft, where
it enters a parabolic path with a velocity of 143 m/s nose high at 45.0° and exits with velocity 143 m/s at 45.0° nose low. During this portion of the flight, the aircraft and objects inside its padded cabin are in free fall; astronauts and equipment float freely as if there were no gravity. What are the aircraft’s (a) speed and (b) altitude at the top of the maneuver? (c) What is the time interval spent in microgravity?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You built a pinball machine that has a banked circular track with radius 0.34 m. The
ball shooter launches the ball directly into this circular track before the ball enters
into the game. You fire pin balls at a constant speed into the track and adjust the
banking angle until it works. The banking angle is 21 degrees. Assume your pin ball
machine is on a horizontal plane, how fast is the ball launched into the track, in m/s?
Hint: I have a video on this problem about swing pendulum but the results are very
similar, except a string length was given instead of path radius and tension was
present instead of normal force. Assume friction is negligible.
In your Christmas Party, one of the
games is Egg Catching. Suppose
You throw the egg at a 45° angle to
your friend standing 30.5 m away.
Your friend's hand aim to catch your
egg at 1.5 m above the ground. At
what initial height, and with what
initial speed, should you release the
egg so that your friend can catch it
without moving his/her hands?
Q7: An artillery shell is fired with an initial velocity of 300 m/s at 55.0°
above the
horizontal. It explodes on a mountainside 42.0 s after firing. What are
the x and y
coordinates of the shell where it explodes, relative to its firing point?
Q8: A student attaches a ball to the end of a string 0.6 m in length and
then swings
the ball in a vertical circle. The speed of the ball is 4.30 m/s at its
highest point and
6.50 m/s at its lowest point. Find the acceleration of the ball when the
string is
vertical and the ball is at (a) its highest point and (b) its lowest point.
Q9: Determine the stopping distance for a skier moving down a slope
with friction
with an initial speed of 20.0 m/s. Assume kinetic friction to be 0.18 and
e = 5.0°.
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 4 - Consider the following controls in an automobile...Ch. 4 - (i) As a projectile thrown at an upward angle...Ch. 4 - Rank the launch angles for the five paths in...Ch. 4 - A particle moves in a circular path of radius r...Ch. 4 - A particle moves along a path, and its speed...Ch. 4 - Figure OQ4.1 shows a bird's-eye view of a car...Ch. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - A girl, moving at 8 m/s on in-line skates, is...Ch. 4 - A sailor drops a wrench front the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - Prob. 4.11OQCh. 4 - Prob. 4.12OQCh. 4 - In which of the following situations is the moving...Ch. 4 - Prob. 4.1CQCh. 4 - Ail ice skater is executing a figure eight,...Ch. 4 - If you know the position vectors of a particle at...Ch. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - Prob. 4.5CQCh. 4 - Prob. 4.6CQCh. 4 - Explain whether or not the following particles...Ch. 4 - A motorist drives south at 20.0 m/s for 3.00 min,...Ch. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - A golf ball is hit off a tee at the edge of a...Ch. 4 - A particle initially located at the origin has an...Ch. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - A fish swimming in a horizontal plane has velocity...Ch. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - An astronaut on a strange planet finds that she...Ch. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - In a local bar. a customer slides an empty beer...Ch. 4 - A projectile is fired in such a way that its...Ch. 4 - To start an avalanche on a mountain slope, an...Ch. 4 - Chinook salmon are able to move through water...Ch. 4 - A rock is thrown upward from level ground in such...Ch. 4 - The speed of a projectile when it reaches its...Ch. 4 - A ball is tossed from an upper-story window of a...Ch. 4 - A firefighter, a distance d from a burning...Ch. 4 - A landscape architect is planning an artificial...Ch. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - The motion of a human body through space can be...Ch. 4 - A soccer player kicks a rock horizontally off a...Ch. 4 - A projectile is fired from the top of a cliff of...Ch. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - The record distance in the sport of throwing...Ch. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Casting molten metal is important in many...Ch. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Section 4.5 Tangential and Radial Acceleration...Ch. 4 - A train slows down as it rounds a sharp horizontal...Ch. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - An airplane maintains a speed of 630 km/h relative...Ch. 4 - A moving beltway at an airport has a speed 1 and a...Ch. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - A bolt drops from the ceiling of a moving train...Ch. 4 - A river has a steady speed of 0.500 m/s. A student...Ch. 4 - A river flows with a steady speed v. A student...Ch. 4 - A Coast Guard cutter detects an unidentified ship...Ch. 4 - A science student is riding on a flatcar of a...Ch. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - A ball is thrown with an initial speed i at an...Ch. 4 - Why is the following situation impassible? A...Ch. 4 - A particle starts from the origin with velocity...Ch. 4 - The Vomit Comet. In microgravity astronaut...Ch. 4 - A basketball player is standing on the floor 10.0...Ch. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - A flea is at point on a horizontal turntable,...Ch. 4 - Towns A and B in Figure P4.64 are 80.0 km apart. A...Ch. 4 - A catapult launches a rocket at an angle of 53.0...Ch. 4 - A cannon with a muzzle speed of 1 000 m/s is used...Ch. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - An astronaut on the surface of the Moon fires a...Ch. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - A hawk is flying horizontally at 10.0 m/s in a...Ch. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - A truck loaded with cannonball watermelons stops...Ch. 4 - A car is parked on a steep incline, making an...Ch. 4 - An aging coyote cannot run fast enough to catch a...Ch. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Do not hurt yourself; do not strike your hand...Ch. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - The water in a river flows uniformly at a constant...Ch. 4 - A person standing at the top of a hemispherical...Ch. 4 - A dive-bomber has a velocity or 280 m/s at ail...Ch. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - An enemy ship is on the east side of a mountain...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A basketball player is standing on the floor 10.0 m from the basket as in Figure P3.47. The height of the basket is 3.05 m, and he shoots the ball at a 40.0 angle with the horizontal from a height of 2.00 m. (a) What is the acceleration of the basketball at the highest point in its trajectory? (b) At what speed must the player throw the basketball so that the ball goes through the hoop without striking the backboard?arrow_forwardThe Vomit Comet. In microgravity astronaut training and equipment testing, NASA flies a KC135A aircraft along a parabolic flight path. As shown in Figure P3.45, the aircraft climbs from 24 000 ft to 31 000 ft, where it enters a parabolic path with a velocity of 143 m/s nose high at 45.0 and exits with velocity 143 m/s at 45.0 nose low. During this portion of the flight, the aircraft and objects inside its padded cabin are in free fall; astronauts and equipment float freely as if there were no gravity. What are the aircrafts (a) speed and (b) altitude at the top of the maneuver? (c) What is the time interval spent in microgravity?arrow_forwardthe horizontal. From what height above the ground was the marble thrown? Ans: 12.33 m it-u0 Question 4. A horizontal rifle is fired at a bull's-eye. The muzzle speed of the bullet is 640 m/s. The gun is pointed directly at the center of the bull's-eye, but the bullet strikes the target 0.026 m below the center. What is the horizontal distance between the end of the rifle and the bull's-eye? Ans: 46.62 m & colleon II.16 fro Question 5 A soccer plaver kicks the ball toward a goal that is 21,0 m in front of him. Thearrow_forward
- Lili throws a ball to her friend Eric. The ball leaves Lili's hand a distance 2.00 meters above the ground with an initial speed of 18.0 m/s at an angle 30.0° with respect to the horizontal. Eric catches the ball 1.20 meters above the ground. What is the distance between Lili and Eric, in meters? Use g = 10.0 m/s2.arrow_forwardSuppose a fast-pitch softball player does a windmill pitch, moving her hand through a circular arc with her arm straight. She releases the ball at a speed of 26.4 m/s (about 59.1 mph). Just before the ball leaves her hand, the ball's radial acceleration is 290 m/s2. What is the length of her arm from the pivot point at her shoulder?arrow_forwardStudents launch a steel ball horizontally from a tabletop. The initial horizontal speed of the ball is v, the tabletop height above the floor is H.The objective is to get steel ball into the coffee can of height h. Calculate the distance D at which the students need to place the can to make a "bulls-eye". v = 6 m/sH = 7 mh = 0.17 m Use g = 10 m/s2, enter two digits after decimal.arrow_forward
- A basketball player shoots a free-throw with initial velocity v0 = 8.5 m/s at an angle θ = 18° above the horizontal. Use a Cartesian coordinate system with the origin located at the position the ball was released, with the ball’s horizontal velocity in the positive x direction and vertical component in the positive y-direction. Assume the basketball encounters no air resistance. a). What is the maximum vertical height hmax, in meters, the ball attains above the release point. b). Determine the time, t in seconds, the basketball takes to reach its maximum vertical height.arrow_forwardH4.arrow_forwardA baseball player friend of yours wants to determine his pitching speed. You have him stand on a ledge and throw the ball horizontally from an elevation 3.0 m above the ground. The ball lands 20 m away. What is his pitching speed?arrow_forward
- A rock is launched off a cliff at a speed of 17.2 m/s at an angle of 35.0 degrees above the horizontal. The height of the cliff is 13.0 m. How far horizontally from the edge of the cliff does the rock land? In your solution sketch the x-t, y-t, Vx-t, Vy-t, Ax-t, and Ay-t diagrams.arrow_forwardA 1.60 kg lead ball is tied to a rope and spun in a circular path of radius 1.20 m. The ball obtains a maximum speed of 12.0 m/s. What is the magnitude of the maximum radial acceleration (in m/s2) of the ball?arrow_forwardA well-thrown football is spinning at 5.9 rev/s. The widest point of the football is at the center of the laces, where the radius is 8.50 cm. What is the magnitude of the centripetal acceleration of the laces in m/s2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY