Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.57P
A two-dimensional incompressible flow field is defined by the velocity components
where V and L are constants. If they exist, find the stream function and velocity potential.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A two-dimensional flow field has an x-component of velocity given in Cartesian coordinates by u = 2x − 3y. (a) Find v, the y-component of velocity, if the flow is incompressible and v = 0 when x = 0. (b) If the flow follows the Bernoulli equation, find an expression for the pressure distribution as a function of x and y, given that the pressure is p0 at the stagnation point.
For the flow of an incompressible fluid, the velocity in
x-direction u = ax + by and velocity in z-direction is zero.
Find velocity component in y-direction such that v = 0 at
y = 0.
O at
1. For incompressible flows, their velocity field
2. In the case of axisymmetric 2D incompressible flows,
where is Stokes' stream function, and
u = VXS,
S(r, z, t) =
Uz =
where {r, y, z} are the cylindrical coordinates in which the flow is independent on the coordinate and hence
1 Ꭷ
r dr
1 dy
r dz
Show that in spherical coordinates {R, 0, 0} with the same z axis, this result reads
Y(R, 0, t)
R sin 0
S(R, 0, t)
UR
uo
Y(r, z, t)
r
=
=
-eq,
and
Up = =
1
ay
R2 sin Ꮎ ᎧᎾ
1 ƏY
R sin Ꮎ ᎧR
-eq
2
(1)
(2)
(3)
Chapter 4 Solutions
Fluid Mechanics
Ch. 4 - Prob. 4.1PCh. 4 - Flow through the converging nozzle in Fig. P4.2...Ch. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - P4.8 When a valve is opened, fluid flows in...Ch. 4 - An idealized incompressible flow has the proposed...Ch. 4 - A two-dimensional, incompressible flow has the...
Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - What is the most general form of a purely radial...Ch. 4 - Prob. 4.16PCh. 4 - An excellent approximation for the two-dimensional...Ch. 4 - Prob. 4.18PCh. 4 - A proposed incompressible plane flow in polar...Ch. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - An incompressible flow in polar coordinates is...Ch. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - P4.28 For the velocity distribution of Prob. 4.10,...Ch. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - P4.35 From the Navier-Stokes equations for...Ch. 4 - A constant-thickness film of viscous liquid flows...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Reconsider the angular momentum balance of Fig....Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Consider the following two-dimensional...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - P4.54 An incompressible stream function is...Ch. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - A two-dimensional incompressible flow field is...Ch. 4 - P4.58 Show that the incompressible velocity...Ch. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - An incompressible stream function is given by...Ch. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - A stream function for a plane, irrotational, polar...Ch. 4 - Prob. 4.68PCh. 4 - A steady, two-dimensional flow has the following...Ch. 4 - A CFD model of steady two-dimensional...Ch. 4 - Consider the following two-dimensional function...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Given the following steady axisymmetric stream...Ch. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Oil, of density and viscosity , drains steadily...Ch. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - P4.83 The flow pattern in bearing Lubrication can...Ch. 4 - Consider a viscous film of liquid draining...Ch. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - The viscous oil in Fig. P4.88 is set into steady...Ch. 4 - Oil flows steadily between two fixed plates that...Ch. 4 - Prob. 4.90PCh. 4 - Prob. 4.91PCh. 4 - Prob. 4.92PCh. 4 - Prob. 4.93PCh. 4 - Prob. 4.94PCh. 4 - Two immiscible liquids of equal thickness h are...Ch. 4 - Prob. 4.96PCh. 4 - Prob. 4.97PCh. 4 - Prob. 4.98PCh. 4 - For the pressure-gradient flow in a circular tube...Ch. 4 - W4.1 The total acceleration of a fluid particle is...Ch. 4 - Is it true that the continuity relation, Eq....Ch. 4 - Prob. 4.3WPCh. 4 - Prob. 4.4WPCh. 4 - W4.5 State the conditions (there are more than...Ch. 4 - Prob. 4.6WPCh. 4 - W4.7 What is the difference between the stream...Ch. 4 - Under what conditions do both the stream function...Ch. 4 - Prob. 4.9WPCh. 4 - Consider an irrotational, incompressible,...Ch. 4 - Prob. 4.1FEEPCh. 4 - Prob. 4.2FEEPCh. 4 - Prob. 4.3FEEPCh. 4 - Given the steady, incompressible velocity...Ch. 4 - Prob. 4.5FEEPCh. 4 - Prob. 4.6FEEPCh. 4 - C4.1 In a certain medical application, water at...Ch. 4 - Prob. 4.2CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. Find the stream function for a parallel flow of uniform velocity V0 making an angle α with the x-axis. 2. A certain flow field is described by the stream function ψ = xy. (a) Sketch the flow field. (b) Find the x and y velocity components at [0, 0], [1, 1], [∞, 0], and [4, 1]. (c) Find the volume flow rate per unit width flowing between the streamlines passing through points [0, 0] and [1, 1], and points [1, 2] and [5, 3].arrow_forwardThe velocity components of a flow field are given by: = 2x² – xy + z², v = x² – 4xy + y², w = 2xy – yz + y² (i) Prove that it is a case of possible steady incompressible fluid flow (ii) Calculate the velocity and acceleration at the point (2,1,3)arrow_forwardby the velocity components u=2V A two-dimensional incompressible flow field is defined y -21 (2-2) V-212 L L == L where V and L are constants. If they exist, find the stream function and velocity potential.arrow_forward
- Q: A flow field is given by: V = (x'y)i+(y°z)j–-(2x*yz+ yz*)k Prove that it is a case of possible steady incompressible fluid flow. Calculate the velocity and acceleration at the point (3,2.4).arrow_forward1. For a flow in the xy-plane, the y-component of velocity is given by v = y2 −2x+ 2y. Find a possible x-component for steady, incompressible flow. Is it also valid for unsteady, incompressible flow? Why? 2. The x-component of velocity in a steady, incompressible flow field in the xy-plane is u = A/x. Find the simplest y-component of velocity for this flow field.arrow_forward4. Consider the steady, two-dimensional velocity field given by: u = 2xy-y²; v=x-y². Show that it is a possible 2d incompressible flow. Find the component of acceleration in x direction of a fluid particle at point (x, y) = (1,2)arrow_forward
- 1. Stagnation Points A steady incompressible three dimensional velocity field is given by: V = (2 – 3x + x²) î + (y² – 8y + 5)j + (5z² + 20z + 32)k Where the x-, y- and z- coordinates are in [m] and the magnitude of velocity is in [m/s]. a) Determine coordinates of possible stagnation points in the flow. b) Specify a region in the velocity flied containing at least one stagnation point. c) Find the magnitude and direction of the local velocity field at 4- different points that located at equal- distance from your specified stagnation point.arrow_forward6)arrow_forward1. Let V = Vx ((x+ yz)i) be the velocity field for a fluid flow. (a) Verify that this fluid flow is two-dimensional and incompressible. (b) Describe the streamlines for this flow.arrow_forward
- 1. For a two-dimensional, incompressible flow, the x-component of velocity is given by u = xy2 . Find the simplest y-component of the velocity that will satisfy the continuity equation. 2. Find the y-component of velocity of an incompressible two-dimensional flow if the x-component is given by u = 15 − 2xy. Along the x-axis, v = 0.arrow_forwardHome Work (steady continuity equation at a point for incompressible fluid flow: 1- The x component of velocity in a steady, incompressible flow field in the xy plane is u= (A /x), where A-2m s, and x is measured in meters. Find the simplest y component of velocity for this flow field. 2- The velocity components for an incompressible steady flow field are u= (A x* +z) and v=B (xy + yz). Determine the z component of velocity for steady flow. 3- The x component of velocity for a flow field is given as u = Ax²y2 where A = 0.3 ms and x and y are in meters. Determine the y component of velocity for a steady incompressible flow. Assume incompressible steady two dimension flowarrow_forward2. Consider a stream function given by = (²+x²). (a) Does this flow satisfy conservation of mass? Show your work. (b) Plot the streamlines for this flow. Let K= 2. Be sure to indicate the direction of the flow. (c) Is this flow irrotational? If so, find the velocity potential for this flow. If not, show that a velocity potential does not exist. (d) Describe the flow represented by this stream function.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license