Organic Chemistry: Principles And Mechanisms
Organic Chemistry: Principles And Mechanisms
2nd Edition
ISBN: 9780393630756
Author: KARTY, Joel
Publisher: W.w. Norton & Company,
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 4.47P
Interpretation Introduction

(a)

Interpretation:

The index of hydrogen deficiency for the given compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Expert Solution
Check Mark

Answer to Problem 4.47P

The index of hydrogen deficiency for the given compound is zero.

Explanation of Solution

The given compound is

Organic Chemistry: Principles And Mechanisms, Chapter 4, Problem 4.47P , additional homework tip  1

This compound has all single bonds and is a saturated compound. There are no double bonds, triple bonds, or rings in the molecule. Each carbon atom is bonded to four other atoms via single bonds. Thus, the index of hydrogen deficiency for this compound is zero.

Conclusion

The index of hydrogen deficiency for a saturated compound is zero.

Interpretation Introduction

(b)

Interpretation:

The index of hydrogen deficiency for the given compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Expert Solution
Check Mark

Answer to Problem 4.47P

The index of hydrogen deficiency for the given compound is one.

Explanation of Solution

The given compound is

Organic Chemistry: Principles And Mechanisms, Chapter 4, Problem 4.47P , additional homework tip  2

The given compound has one double bond in its structure. Each double bond contributes 1 to the index of hydrogen deficiency. The given structure does not contain triple bonds and rings. Thus, for this compound, the index of hydrogen deficiency is 1.

Conclusion

The index of hydrogen deficiency for an unsaturated compound depends on the number of double bonds, triple bonds, and rings in its structure.

Interpretation Introduction

(c)

Interpretation:

The index of hydrogen deficiency for the given compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Expert Solution
Check Mark

Answer to Problem 4.47P

The index of hydrogen deficiency for the given compound is three.

Explanation of Solution

The given compound is

Organic Chemistry: Principles And Mechanisms, Chapter 4, Problem 4.47P , additional homework tip  3

The given compound has one triple bond in its structure. Each triple bond contributes 2 to the index of hydrogen deficiency. There is one ring in the structure. Each ring contributes 1 to the index of hydrogen deficiency. Thus, for this compound, the index of hydrogen deficiency is 2+1=3.

Conclusion

The index of hydrogen deficiency for an unsaturated compound depends on the number of double bonds, triple bonds, and rings in its structure.

Interpretation Introduction

(d)

Interpretation:

The index of hydrogen deficiency for the given compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Expert Solution
Check Mark

Answer to Problem 4.47P

The index of hydrogen deficiency for the given compound is four.

Explanation of Solution

The given compound is

Organic Chemistry: Principles And Mechanisms, Chapter 4, Problem 4.47P , additional homework tip  4

The given compound has one ring in its structure. Each ring contributes 1 to the index of hydrogen deficiency. There are three double bonds in the structure. Each double bond contributes 1 to the index of hydrogen deficiency. Thus, the index of hydrogen deficiency for this compound is 1(1)+3(1)=1+3=4.

Conclusion

The index of hydrogen deficiency for an unsaturated compound depends on the number of double bonds, triple bonds, and rings in its structure.

Interpretation Introduction

(e)

Interpretation:

The index of hydrogen deficiency for the given compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Expert Solution
Check Mark

Answer to Problem 4.47P

The index of hydrogen deficiency for the given compound is one.

Explanation of Solution

The given compound is

Organic Chemistry: Principles And Mechanisms, Chapter 4, Problem 4.47P , additional homework tip  5

The given compound has one ring in its structure. Each ring contributes 1 to the index of hydrogen deficiency. There are no double bonds and triple bonds in the structure. Thus, the index of hydrogen deficiency for this compound is 1.

Conclusion

The index of hydrogen deficiency for an unsaturated compound depends on the number of double bonds, triple bonds, and rings in its structure.

Interpretation Introduction

(f)

Interpretation:

The index of hydrogen deficiency for the given compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Expert Solution
Check Mark

Answer to Problem 4.47P

The index of hydrogen deficiency for the given compound is four.

Explanation of Solution

The given compound is

Organic Chemistry: Principles And Mechanisms, Chapter 4, Problem 4.47P , additional homework tip  6

The given compound has two rings in its structure. Each ring contributes 1 to the index of hydrogen deficiency. There are two double bonds in the structure. Each double bond contributes 1 to the index of hydrogen deficiency. Thus, the index of hydrogen deficiency for this compound is 2(1)+2(1)=2+2=4.

Conclusion

The index of hydrogen deficiency for an unsaturated compound depends on the number of double bonds, triple bonds, and rings in its structure.

Interpretation Introduction

(g)

Interpretation:

The index of hydrogen deficiency for the given compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Expert Solution
Check Mark

Answer to Problem 4.47P

The index of hydrogen deficiency for the given compound is five.

Explanation of Solution

The given compound is

Organic Chemistry: Principles And Mechanisms, Chapter 4, Problem 4.47P , additional homework tip  7

The given compound has two rings in its structure. Each ring contributes 1 to the index of hydrogen deficiency. There are three double bonds in the structure. Each double bond contributes 1 to the index of hydrogen deficiency. Thus, the index of hydrogen deficiency for this compound is 2(1)+3(1)=2+3=5.

Conclusion

The index of hydrogen deficiency for an unsaturated compound depends on the number of double bonds, triple bonds, and rings in its structure.

Interpretation Introduction

(h)

Interpretation:

The index of hydrogen deficiency for the given compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Expert Solution
Check Mark

Answer to Problem 4.47P

The index of hydrogen deficiency for the given compound is five.

Explanation of Solution

The given compound is

Organic Chemistry: Principles And Mechanisms, Chapter 4, Problem 4.47P , additional homework tip  8

The given compound has no rings in its structure. There is one double bond in the structure. Each double bond contributes 1 to the index of hydrogen deficiency. There are two triple bonds in the structure. Each triple bond contributes 2 to the index of hydrogen deficiency. Thus, the index of hydrogen deficiency for this compound is 1(1)+2(2)=1+4=5.

Conclusion

The index of hydrogen deficiency for an unsaturated compound depends on the number of double bonds, triple bonds, and rings in its structure.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
19.78 Write the products of the following sequences of reactions. Refer to your reaction road- maps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18 roadmaps along with your new Chapter 19 roadmap for these. (a) 1. BHS 2. H₂O₂ 3. H₂CrO4 4. SOCI₂ (b) 1. Cl₂/hv 2. KOLBU 3. H₂O, catalytic H₂SO4 4. H₂CrO4 Reaction Roadmap An alkene 5. EtOH 6.0.5 Equiv. NaOEt/EtOH 7. Mild H₂O An alkane 1.0 2. (CH3)₂S 3. H₂CrO (d) (c) 4. Excess EtOH, catalytic H₂SO OH 4. Mild H₂O* 5.0.5 Equiv. NaOEt/EtOH An alkene 6. Mild H₂O* A carboxylic acid 7. Mild H₂O* 1. SOC₁₂ 2. EtOH 3.0.5 Equiv. NaOEt/E:OH 5.1.0 Equiv. NaOEt 6. NH₂ (e) 1. 0.5 Equiv. NaOEt/EtOH 2. Mild H₂O* Br (f) i H An aldehyde 1. Catalytic NaOE/EtOH 2. H₂O*, heat 3. (CH,CH₂)₂Culi 4. Mild H₂O* 5.1.0 Equiv. LDA Br An ester 4. NaOH, H₂O 5. Mild H₂O* 6. Heat 7. MgBr 8. Mild H₂O* 7. Mild H₂O+
Li+ is a hard acid.  With this in mind, which if the following compounds should be most soluble in water? Group of answer choices LiBr LiI LiF LiCl
Q4: Write organic product(s) of the following reactions and show the curved-arrow mechanism of the reactions. Br MeOH OSO2CH3 MeOH

Chapter 4 Solutions

Organic Chemistry: Principles And Mechanisms

Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.1YTCh. 4 - Prob. 4.2YTCh. 4 - Prob. 4.3YTCh. 4 - Prob. 4.4YTCh. 4 - Prob. 4.5YTCh. 4 - Prob. 4.6YTCh. 4 - Prob. 4.7YTCh. 4 - Prob. 4.8YTCh. 4 - Prob. 4.9YTCh. 4 - Prob. 4.10YTCh. 4 - Prob. 4.11YTCh. 4 - Prob. 4.12YTCh. 4 - Prob. 4.13YTCh. 4 - Prob. 4.14YTCh. 4 - Prob. 4.15YTCh. 4 - Prob. 4.16YTCh. 4 - Prob. 4.17YTCh. 4 - Prob. 4.18YTCh. 4 - Prob. 4.19YTCh. 4 - Prob. 4.20YTCh. 4 - Prob. 4.21YTCh. 4 - Prob. 4.22YTCh. 4 - Prob. 4.23YTCh. 4 - Prob. 4.24YTCh. 4 - Prob. 4.25YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License