The Science and Engineering of Materials (MindTap Course List)
7th Edition
ISBN: 9781305076761
Author: Donald R. Askeland, Wendelin J. Wright
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.41P
To determine
The effect on the dislocations when the either of the given angles become equals to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
!
When λ=1.5Å and θ=30°, how much strain (Δd/d) is needed to cause a peak broadening same as that of grain size=50Å?
Please show how the value of b was calculated
Calculate the dislocation density in tungsten if the stress is controlled by the stress necessary to operate a Frank-Read source. The stress in the plane is 31 Mpa. Take G = 275 Gpa
Chapter 4 Solutions
The Science and Engineering of Materials (MindTap Course List)
Ch. 4 - Gold has 5.82108vacancies/cm3 at equilibrium at...Ch. 4 - Prob. 4.2PCh. 4 - Calculate the number of vacancies per cm3 expected...Ch. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Au and Ag form a substitutional solid solution....
Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Write down the defect chemistry equation for...Ch. 4 - Prob. 4.20PCh. 4 - What is the Burger’s vector orientation...Ch. 4 - What is slip system and what role does it play in...Ch. 4 - Draw a Burgers circuit around the dislocation...Ch. 4 - What are the Miller indices of the slip...Ch. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Calculate the length of the Burgers vector in the...Ch. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - The crystal shown in Figure 4-19 contains two...Ch. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Why is it that single crystal and polycryst alline...Ch. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Determine the ASTM grain size number for the...Ch. 4 - Certain ceramics with special dielectric...Ch. 4 - Prob. 4.61PCh. 4 - Calculate the angle of a smalla ngle grain...Ch. 4 - For BCC iron, calculate the average distance...Ch. 4 - Every time we alloy a metal, it gets stronger. Is...Ch. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75DPCh. 4 - You would like a metal plate with good...Ch. 4 - Prob. 4.77DPCh. 4 - Temperature dependence of vacancy conc enlralwns....Ch. 4 - Prob. 4.79CPCh. 4 - Prob. 4.80CPCh. 4 - Describe the problems associated with metal...Ch. 4 - Prob. 4.2KP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6.31 The flow stress for an alloy is 100 MPa when its dislocation density is 106 cm-2, and 150 MPa when its dislocation density is 108 cm-². When the flow stress is 190 MPa, what is the dislocation density?arrow_forwardPlease type answer no write by hend.arrow_forward4.26(a) Iron (r = 0.124 nm, G = 70 GPa) is being deformed to a shear strain of0.3. Assuming a constant dislocation density equal to 1010 cm−2, what isthe average distance each dislocation has to move?(b) Assuming that the strain rate is 10−2 s−1, what is the average dislocationvelocity?arrow_forward
- 1. A piece of fully-annealed copper crystal has the orientation as shown. It is loaded under the plane stress condition of ox-20 MPa, txy=10 MPa, σy=-10 MPa. What is the resolved shear stress on the crystallographic plane containing atoms No. 1, 6, and 14 along the crystallographic direction intercepting atoms No. 6, and 11? 10 13 11 -146 12 a 7arrow_forwardA small-angle tilt boundary has a misorientation of 0.1◦. What is thespacing between the dislocations in this boundary if the Burgers vector ofthe dislocation is 0.33 nm?arrow_forwardConsider an aluminum polycrystal with a grain size of 10 μm. If a dislocationsource at the center of a grain emits dislocations under an appliedshear stress of 50 MPa that pile up at the grain boundaries, what is the stressexperienced by a grain boundary? Take G = 26 GPa and b = 0.3 nm.arrow_forward
- Determine the tensile yield strength (0.2% offset) and the maximum strength of a metal alloy having the following tensile stress-strain diagram. Select one: The tensile yield strength Sy = 100 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 170 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 150 Mpa and the maximum strength Smax = 200 Mpa. The tensile yield strength Sy = 240 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 80 Mpa and the maximum strength Smax = 250 Mpa.arrow_forwardDetermine the tensile yield strength (0.2% offset) and the maximum strength of a metal alloy having the following tensile stress-strain diagram. Select one: The tensile yield strength Sy = 100 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 170 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 150 Mpa and the maximum strength Smax = 200 Mpa. The tensile yield strength Sy = 240 Mpa and the maximum strength Smax = 250 Mpa. The tensile yield strength Sy = 80 Mpa and the maximum strength Smax = 250 Mpa.arrow_forward4-52arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dislocations and Plastic Deformation; Author: LearnChemE;https://www.youtube.com/watch?v=cpvTwYAUeA8;License: Standard Youtube License