The Science and Engineering of Materials (MindTap Course List)
7th Edition
ISBN: 9781305076761
Author: Donald R. Askeland, Wendelin J. Wright
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.2P
To determine
A number of vacancies per m3 for gold at temperature 900℃.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the activation energy for vacancy formation in aluminum, if theequilibrium number of vacancies at 500 °C is 7.57 × 1023 m-3. Given that theatomic weight and density for aluminum are 26.98 g/mol and2.62 g/cm3, respectively.
Calculate the number of vacancies per m3 for gold at 900 C. the energy for vacancy formation is 0.86 eV/atom.
i need the answer quickly
Chapter 4 Solutions
The Science and Engineering of Materials (MindTap Course List)
Ch. 4 - Gold has 5.82108vacancies/cm3 at equilibrium at...Ch. 4 - Prob. 4.2PCh. 4 - Calculate the number of vacancies per cm3 expected...Ch. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Au and Ag form a substitutional solid solution....
Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Write down the defect chemistry equation for...Ch. 4 - Prob. 4.20PCh. 4 - What is the Burger’s vector orientation...Ch. 4 - What is slip system and what role does it play in...Ch. 4 - Draw a Burgers circuit around the dislocation...Ch. 4 - What are the Miller indices of the slip...Ch. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Calculate the length of the Burgers vector in the...Ch. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - The crystal shown in Figure 4-19 contains two...Ch. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Why is it that single crystal and polycryst alline...Ch. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Determine the ASTM grain size number for the...Ch. 4 - Certain ceramics with special dielectric...Ch. 4 - Prob. 4.61PCh. 4 - Calculate the angle of a smalla ngle grain...Ch. 4 - For BCC iron, calculate the average distance...Ch. 4 - Every time we alloy a metal, it gets stronger. Is...Ch. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75DPCh. 4 - You would like a metal plate with good...Ch. 4 - Prob. 4.77DPCh. 4 - Temperature dependence of vacancy conc enlralwns....Ch. 4 - Prob. 4.79CPCh. 4 - Prob. 4.80CPCh. 4 - Describe the problems associated with metal...Ch. 4 - Prob. 4.2KP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the ratio of the number of vacancies in equilibrium at 27 Cin aluminum to that produced at 527 C. The energy of the formation of vacancies in .aluminum is 68 kJ/molarrow_forwardThe vacancy concentration for a metal A with an activation energy Q is 2x10-5. Calculate the vacancy concentration for a second metal B with activation energy 1.2Q. (This question has only one correct answer) а. 2.3 x 10-6 b. 4.3 x 10-5 O c. 1.3 x 10-6 d. 3.3 x 10-4arrow_forwardIn an Al casting ingot containing 2wt.% Cu, the content of Cu at grain boundaries has reached 12wt.%. How long this ingot should be held at 530 K to attain a difference of 10% in Cu concentration between center and boundary of the grains. The mean distance from the center of grains to the boundary is 100μm. Du= 3.9x10⁹ cm²/secarrow_forward
- I need the solution of this question please please please quickly Thanksarrow_forwardFor a Fe-2.5 %C alloy , what is the temperature at which the first liquid forms on heating and also give the composition of the liquid at that temperaturearrow_forwardMetal A (Tm=860 oC) and metal B (Tm=620 oC) were fully dissolved in each other in the liquid state. The ultimate solubility of B in A is 12% at 460 oC which decreasing with decreasing temperature to 3% at room temperature while the maximum solubility of A in B is 7% at 460 oC still constant to room temperature. A and B form eutectic at 460 oC and 48 % of B. construct phase diagram for A-B alloying system, label all phases and temperatures, and answer the following: a) 28 wt % A alloy is slowly cooled from 720 oC at what temperature does the first solid phase is formed? What is the composition of this solid phase? For this alloy what is the mass fraction of the phases at, 600 oC, 300 oC ,and TR? c) What is the ?composition of the phases in (b)arrow_forward
- Temperature ("C) Temperature ($1 Consider 1 kg of Copper - Silver alloy (Cu - Ag) containing 75 wt% Ag. The phase diagram of the alloy is shown in the figure below. The alloy is cooled to 778 °C (just below the eutectic temperature). Calculate the mass in kg of the eutectic phase B (phase B that appears during the eutectic reaction) that forms? Composition (at% Ag 20 40 60 100 2200 80 1200 2000 Liquidus 1000 LIquid 1800 Solidus 1600 800 779°C (T 80 91.2 1400 IC. 1200 600 Solvus T000 400 800 200 20 40 80 100 (Cu) Composioon wt Aarrow_forward1. For some hypothetical metal the equilibrium number of vacancies at 750°C is 2.8×1024?−3. If the density and atomic weight of this metal are 5.60 ? ??3⁄ and 65.6 ?/???, respectively, calculate the fraction of vacancies for this metal at 750°C. 2. Calculate the number of vacancies per cubic meter in iron at 850°C. The energy for vacancy formation is 1.08 eV/atom. The density and atomic weight for Fe are 7.65 g/cm3 and 55.85 g/mol, respectively. Answer both pleasearrow_forwardA 45 wt% Pb-55 wt% Mg alloy is rapidly quenched to room temperature from an elevated temperature in such a way that the high- temperature microstructure is preserved. This microstructure is found to consist of the a phase and Mg2Pb, having respective mass fractions of 0.65 and 0.35. Determine the approximate temperature from which the alloy was quenched. Use Animated Figure. °℃arrow_forward
- Temperature C For the phase diagram shown calculate the amount of austenite present at the point P 1600 8+ liquid 1400 Liquid 1200 Fe,C+ liquid Y. 1000 y+Fe,C 800 a + Fe,C Fe,C- 600 2. 4. 6. C /wt%arrow_forwardFor a hypothetical material, experiments show that a sample containing 1 billion atoms has 40 vacancies under equilibrium conditions at 600 degrees Celsius. Determine the energy for vacancy formation in the material at 600 degrees Celsius.arrow_forwardDetermine a for copper at reference temperature of 17ºC, 31ºC and 48ºC. Use Tcopper = 234.5ºC.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY