FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.41CU
To determine
The given statement is true or false.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Helium is compressed through a compressor steadily. At the inlet the pressure is and the temperature is . At the exit the pressure is and the temperature is . The power input is and the heat loss rate is during this process. Neglect the kinetic and potential energy changes. Assume helium is ideal gas with a constant specific heat and its specific heat ratio , which means that enthalpy can be calculated using . Calculate the enthalpy per unit mass at the exit _________
(a) Answer these questions:
ii.
iii.
i.
State three (3) variables or parameters which remain unchanged over time in a steady flow
system.
State the main purpose for a compressor and a turbine.
Write down the mass balance equation for a single-stream (one-inlet and one-outlet) steady-flow
device in terms of density, area and velocity.
a. Air at 8 bar 100°C flows in a duct of 15 cm diameter at rate of 150 kg/min. It is throttled by upto
4 bar pressure. Determine the velocity of air after throttling and also show that enthalpy constant
before and after throttling.
b,
Ans. 37.8 m/s
1. Determine the power required by a compressor designed to compress atmospheric through inlet
area of 90 cm? with velocity of 50 m/s and leaves with velocity of 120 m/s from exit area of 5
cm?. Consider heat losses to environment to be 10% of power input to compressor.
Ans. 50.4 kw
C' Determine the power available from a steam turbine with following details;
Steam flow rate = 1 kg/s
Velocity at inlet and exit = 100 m/s and 150 m/s
Enthalpy at inlet and exit = 2900 kJ/kg, 1600 k]/kg
Change in potential energy may be assumed negligible.
Ans. 1293.75 kw
d. Determine the heat transfer in emptying of a rigid tank of 1 m² volume containing air at 3 bar and
27°C initially. Air is allowed to escape slowly by opening a valve until the pressure in…
Chapter 4 Solutions
FUND OF ENG THERMODYN(LLF)+WILEYPLUS
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A jet engine consists of a diffuser, compressor, combustor, turbine, and nozzle. Flow in the diffuser and nozzle are isentropic and flow through the compressor and turbine can be idealized as isentropic. Label the inlets to each component as: a, 1, 2, 3, and 4, respectively, and the nozzle exit as 5. The given parameters are as follows: air pressure and temperature at the diffuser inlet, Pa and Ta, respectively, the speed of air entering the diffuser, va, the compressor pressure ratio, r, the turbine inlet temperature, T3, and the air pressure at the nozzle exit, P5 = Pa. Assume that the working fluid is air alone and use an air standard analysis, i.e., take into account the temperature dependence of air specific heats. Note: the kinetic energies at the diffuser inlet and nozzle exit are comparable to the corresponding enthalpies. a) Find symbolically, in detail, air temperatures at all principal locations: a, 1, 2, 3, 4, and 5 (where some of these are given). b) Find symbolically, in…arrow_forwardp46,#14 with illustration and explanationarrow_forward1. Determine the mass flow rate at the inlet and exits, in kg/s. 3 1 the (AV)2 = (AV)3 www ㅋarrow_forward
- Calculate the change of specific entropy, in units of , of water vapor as it passes through a condenser kJ [kg-K from state 1 to 2. P1 = 1 bar Pz = 1 bar X2 = 0.20 X1 = 1arrow_forwardA flow of fluid where the density on different states remain the same? A. Compressible Flow B. Incompressible Flow C. Sonic Flow D. Supersonic Flowarrow_forwardVortex tube simple modeling [1] A vortex tube takes in high-pressure air at 650 kPa and 305 K, and splits it into two streams at a lower pressure, 100 kPa: one at a higher temperature of 325 K and one at a lower temperature. The fraction of mass entering that leaves at the cold outlet is f-0.25. The vortex tube operates continuously at steady state, is adiabatic, and performs/experiences no work. Air should be modeled as an ideal gas with constant specific heat: R=287 J/kg. K and Cp-1004 J/kg.K. cold outlet f=0.25 P₁-100 kPa inlet T₁ = 305 K P,- 650 kPa vortex tube hot outlet T₂-325 K P₂-100 kPa a) Determine the temperature at the cold end. Then, determine whether this device is physically possible. b) Analyze the effect of inlet pressure P1 (from 1 bar to 10 bars) on the cold end temperature. c) Consider the case of steam and repeat a) and b). d) Discuss the practical problems that may occur when using steam.arrow_forward
- Air (R-0.287 kJ/kg.K, c-1.005 kJ/kg.K) is contained in a piston cylinder device, it expands first isothermally (1=>2) thẹn isobaric expansion takes place (2=>3), given the following: v- K. What is the change in entropy (kJ/kg.K) during process 1-2? 0.2 m /kg, v,= 0.53 m /kg, v,-0.74 m /kg, P = 600 kPa, T min = 673 maxarrow_forwardQ.6.A. Oxygen enters a nozzle with a negligible velocity at 440 K and 12 bar, and leaves at 1.9 bar. Determine the volumetric flow rate of the oxygen at the nozzle entrance if the nozzle exit area is 2.5 cm2 and the ratio of inlet temperature to the outlet equal 1.69. (Cy = 718 J/kg K and Cp = 1005 J/kg K)arrow_forwardConsider the arrangement shown in Fig. 1. For this setup the streams of air and water floware separated, and the air is modelled as an ideal gas. The data for steady-state operationis shown in the figure. Assume that heat transfer to the surroundings can be neglected.Questions:Determine:(a) the total power required by both compressors, in kW(b) the velocity of the air at the exit of the nozzle, in m/s(c) the mass flow rate of the water, in kg/s(d) the power required by the pump, in kWarrow_forward
- 55 kmol per hour of air is compressed from P1 = 1 bar to P2 = 6.1 bar in a steady flow compressor. Delivered mechanical power is 98.9 kW. Temperatures and velocities are: T1 = 301K T2 = 520 K, u1 = 10.8 m/s and u2 = 3.8 m/s. Estimate the rate of heat transfer from the compressor in kW, 3 decimal values. Assume that Cp = 7/2R and that enthalpy is independent of pressure.arrow_forwardLiquid water at 100 kPa, 30 °C, enters a pump with a flow rate (rin) of 18 kg/s with a velocity of 2 m/s. At the exit the corresponding properties are 1000 kPa, 30.1 °C, 18 kg/s , and 5 m/s. Part A Determine the flow work (Wp) at the pump inlet. Express your answer to three significant figures. V AE¢ It vec ? kW Submit Request Answer Part B Determine the flow work (Wp) at the pump exit. Express your answer to three significant figures. Tvo| AE¢ I vec kWarrow_forwardSole for the flow area and power required. Step by step solution thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License