FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.83P
To determine
The value of specific volume and the heat transfer between the tank and its surroundings.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A and B tanks are fixed volume and connected with a valve. Initially the valve is closed. The
volume of tank A is 2m³ and it is contained with propane at 116 kPa, 345 K. The volume of
tank B is 0.72 m³ and is filled with propane at 152 kPa, 412 K. Calculate the pressure when
the valve in the middle is opened and these two tanks become equilibrium at 367 K.
kj
= 0,1885
kg.K
(R propane
A
B
2. Saturated steam at 100°C is heated to 350°C at constant pressure. Use the steam tables to determine: a. The pressure in bar. b. the required heat input (J/s) if a continuous stream flowing at 100 kg/s undergoes the process.
37. A certain gas with Cp = 2.215 KJ/kg °K and
R= 0.518 KJ/kg °K with a volume of
0.425m3 and 300 °K has an initial pressure
of 106.869 KPa.Heat is added at constant
volume until the final pressure becomes
387.72 KPa. How much heat is added?
Chapter 4 Solutions
FUND OF ENG THERMODYN(LLF)+WILEYPLUS
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As shown in the figure, a 260-ft tank contains 25 lb of H20 initially at 30 lbf/in?. The tank is connected to a large steam line carrying steam at 200 lbf/in?, 450°F. Steam flows into the tank through a valve until the tank pressure reaches p2 = 160 lbf/in? and the temperature is 400°F, at which time the valve is closed. Steam at Tank 200 lbf/in.2. Valve (1) Initially: 30 lbfin.?, mı = 25 lb (2) Finally: P, lbfin.?, 400°F. 450°F (1) Determine the amount of mass that enters the tank, in Ib, and the heat transfer to the tank from its surroundings, in Btu.arrow_forward2.14 Consider the piston-cylinder arrangement shown in the figure. A frictionless piston is free to move between two sets of stops. When the piston rests on the lower stops, the enclosed volume is 400 L. When the piston reaches the upper stops, the volume is 600 L. The cylinder initially contains water at 100 kPa, 20% quality. It is heated until the water eventually exists as saturated vapor. The mass of the piston requires 300 kPa pressure to move it against the outside ambient pressure. Determine the final pressure in the cylinder, the heat transfer (in kJ), and the work (in kJ) for the overall process.arrow_forwardAir occupies a 0.5-m' tank. It starts at a pressure of 5 bar and a temperature of 300 K. Energy flows into the tank via heat transfer until the temperature reaches 400 K. This happens at constant pressure, which is possible because there is a pressure-relief valve that lets air leave the tank to keep the pressure constant. Neglect kinetic and potential energy effects, and use the ideal gas model with constant specific heats evaluated at 350 K. 4. Determine the mass of air that escapes, in kg. Determine the amount of energy transfer by heat, in kJ. a. b. Hint: use Ucv = mu; he u+ RT, and cv+ R= Cp.arrow_forward
- Determine the quality of 290 kPa of steam when 570 kJ / kg of energy is lost from the saturated vapor.a. steam quality = ......%b. what is the temperature of the steam = ..... Carrow_forwardIn detail ,Must be handwritten only.arrow_forwardWater at 320C and 20bar undergoes a process within a rigid tank to a final pressure of 30bar. Determine the following. a. If the final state is superheated, report the temperature. If the final state is two phase, report the quality. b. Determine the heat transfer for the process (kJ/kg)arrow_forward
- simple solutionarrow_forward2.2) A cylinder and piston assembly contain water at 105°C and 85% quality, with a volume of one liter. The system heats up, which causes the piston to rise and encounter a linear spring. At this point the volume is 1.5 liters, the diameter of the piston is 150 mm, and the spring constant is 100 N/mm. Heating continues, so the piston compresses the spring. Determine the pressure in the cylinder when the temperature reaches 600° C. Ans = 197kPaarrow_forward1) A 10 Liter pressure cooker has an operating pressure of 400 kPa. Initially, % of the volume is filled with saturated water and the rest is saturated vapor. What temperature is the vessel? After heating for 5 hours, the pressure cooker ran dry. What was the average rate of heat transfer?arrow_forward
- As shown in the figure, a 260-ft³ tank contains 25 lb of H20 initially at 30 lbf/in2. The tank is connected to a large steam line carrying steam at 200 lbf/in2, 450°F. Steam flows into the tank through a valve until the tank pressure reaches p2 = 100 lbf/in? and the temperature is 400°F, at which time the valve is closed. Steam at Tank 200 lbf/in_². Valve |(1) Initially: 30 lbfin.2, mi = 25 lb (2) Finally: P, lbfin.?, 400°F. 450°F Determine the amount of mass that enters the tank, in Ib, and the heat transfer to the tank from its surroundings, in Btu.arrow_forwardTwo vessels A and B of different sizes are connected by a pipe with a valve. Vessel A contains 142 L of air at 2,767.92 kPa, 93.330C. Vessel B, of unknown volume, contains air at 68.95 kPa, 4.440C. The valve is opened and, when the properties have been determined, it is found that pm = 1378.96 kPa, tm = 43.330C. What is the volume of vessel B?arrow_forward1. (i) A can of soft drink at room temperature is put into the refrigerator so that it will cool. Would you model the can of soft drink as a closed system or as an open system? (ii) A candle is burning in a well-insulated room. Taking the room (the air plus the candle) as the system, determine if there is any heat transfer during the burning process. Explain how?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license