
Concept explainers
A spring cannon is located at the edge of a table that is 1.20 m above the floor. A steel ball is launched from the cannon with speed vi at 35.0° above the horizontal. (a) Find the horizontal position of the ball as a function of vi at the instant it lands on the floor. We write this function as x(vi). Evaluate x for (b) vi = 0.100 m/s and for (c) vi = 100 m/s. (d) Assume vi is close to but not equal to zero. Show that one term in the answer to part (a) dominates so that the function x(vi) reduces to a simpler form. (c) If vi is very large, what is the approximate form of x(v)? (f) Describe the overall shape of the graph of the function x(vi).
(a)

The horizontal position of the ball as a function of
Answer to Problem 43AP
The horizontal position of the ball as a function of
Explanation of Solution
Given info: The located at the spring cannon is
Formula to calculate the vertical distance covered by the ball is,
Here,
The vertical component of the velocity is,
Here,
Substitute
Substitute
Solve the equation (2).
Formula to calculate the horizontal distance covered by the ball is,
Here,
The horizontal component of the velocity is,
Substitute
Substitute
Conclusion:
Therefore, the horizontal position of the ball as a function of
(b)

The horizontal position of the ball as
Answer to Problem 43AP
The horizontal position the ball as
Explanation of Solution
Given info: The located at the spring cannon is
From equation (IV),
Substitute
Conclusion:
Therefore, the horizontal position the ball as
(c)

The horizontal position of the ball as
Answer to Problem 43AP
The horizontal position the ball as
Explanation of Solution
Given info: The located at the spring cannon is
From equation (4),
Substitute
Conclusion:
Therefore, the horizontal position the ball as
(d)

The horizontal position of the ball as a function of
Answer to Problem 43AP
The horizontal position of the ball as a function of
Explanation of Solution
Given info: The located at the spring cannon is
From equation (IV),
The value of
Substitute
Conclusion:
Therefore, the horizontal position of the ball as a function of
(e)

The horizontal position of the ball as a function of
Answer to Problem 43AP
The horizontal position of the ball as a function of
Explanation of Solution
Given info: The located at the spring cannon is
From equation (4),
The term is
Conclusion:
Therefore, the horizontal position of the ball as a function of
(f)

The overall shape of the graph of the function
Answer to Problem 43AP
In starting condition graph
Explanation of Solution
Given info: The located at the spring cannon is
The graph of
Conclusion:
Therefore, the starting condition graph
Want to see more full solutions like this?
Chapter 4 Solutions
Physics for Scientists and Engineers with Modern Physics
- A 11 kg weight is attached to a spring with constant k = 99 N/m and subjected to an external force F(t) =-704 sin(5t). The weight is initially displaced 4 meters above equilibrium and given an upward velocity of 5 m/s. Find its displacement for t> 0. y(t) וןarrow_forward7. A race car accelerates from rest to 55 m s-1 in 5.0 seconds. The acceleration of the car Is m s-² 8. An object's speed increases uniformly from 10.5 km per hour to 99.8 km per hour in 2.41 seconds. Calculate the acceleration in m s-2 and express your answer to three significant figures. 9. The acceleration-time graph of a car is shown below. The initial speed of the car is 5.0 m s-1. # Acceleration (ms) 12 8.0- 4.0- 2.0 4.0 6.0 Time (s) Calculate the velocity of the car at t = 4.0 s. 3arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardProblem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° horizon. above the 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Please solve and answer the question correctly please. Thank you!!arrow_forwardPlease view both photos, and answer the question correctly please. Thank you!!arrow_forwardA thrown brick hits a window, but doesn't break it. Instead it reverses direction and ends down on the ground below the window. Since the brick didn't break the glass, we know: О The force of the brick on the glass > the force of the glass on the brick. О The force of the brick on the glass the force of the glass on the brick. = О The force of the brick on the glass < the force of the glass on the brick. О The brick didn't slow down as it broke the glass.arrow_forward
- Alexandra (wearing rubber boots for traction) is attempting to drag her 32.6-kg Golden Retriever across the smooth ice by applying a horizontal force. What force must she apply to move the dog with a constant speed of 0.950 m/s? ☐ 31.0 lb. ☐ 319 kg. ○ Zero. 32.6 kg.arrow_forwardThe figure shows a graph of the acceleration of an object as a function of the net force acting on it. The mass of this object, in grams, is closest to 11 a(m/s²) 8.0+ 6.0- 4.0- 2.0- 0+ F(N) 0.00 0.50 1.00 ☐ 130 ○ 8000 ☐ 89arrow_forwardValues that are within standard deviations represent measurements that are considered to be near the true value. Review the data from the lab and determine whether your data is within standard deviations. Report, using numerical values, whether your data for each angle is within standard deviations. An acceptable margin of error typically falls between 4% and 8% at the 95% confidence level. Review your data for each angle to determine whether the margin of error is within an acceptable range. Report with numerical values, whether your data for each angle is within an acceptable margin of error. Can you help explain what my data means in terms of the standard deviation and the ME? Thanks!arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





