![ORGANIC CHEMISTRY](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9780134645704/9780134645704_smallCoverImage.gif)
Concept explainers
The following reaction is a common synthesis used in the
When we double the concentration of methoxide ion (CH3O−), we find that the reaction rate doubles. When we triple the concentration of 1-bromobutane, we find that the reaction rate triples.
- a. What is the order of this reaction with respect to 1-bromobutane? What is the order with respect to methoxide ion? Write the rate equation for this reaction. What is the overall order?
- b. One lab textbook recommends forming the sodium methoxide in methanol solvent, but before adding 1-bromobutane, it first distills off enough methanol to reduce the mixture to half of its original volume. What difference in rate will we see when we run the reaction (using the same amounts of reagents) in half the volume of solvent?
(a)
![Check Mark](/static/check-mark.png)
To determine: The order of the given reaction with respect to 1-bromobutane and methoxide ion, rate equation and overall order of the reaction.
Interpretation: The order of the given reaction with respect to 1-bromobutane and methoxide ion, rate equation and overall order of the reaction is to be predicted.
Concept introduction: The order of the reaction is the sum of stoichiometric coefficients of reactants that governs the rate of the reaction. When rate of the reaction is independent to the concentration of the reactants, it called zero order reaction.
Answer to Problem 4.34SP
The order of the given reaction with respect to 1-bromobutane and methoxide ion is
Explanation of Solution
The given balanced chemical equation is,
It is given that the rate of the reaction changes when concentration of 1-bromobutane and methoxide ion is changed. This shows that the rate of the reaction depends upon the concentration of reactants.
The rate equation of the given reaction is expressed as,
Where,
The rate equation shows that the rate of reaction depends upon the concentration of 1-bromobutane and methoxide ion. The value of stoichiometric coefficient on 1-bromobutane and methoxide ion concentration term in rate equation is
The order of the reaction is the sum of stoichiometric coefficient in rate equation. Therefore, the overall order of the given reaction is
(b)
![Check Mark](/static/check-mark.png)
To determine: The difference in the rate, when the reaction is run in half the volume of solvent.
Interpretation: The difference in the rate, when the reaction is run in half the volume of solvent is to be predicted.
Concept introduction: The order of the reaction is the sum of stoichiometric coefficients of reactants that governs the rate of the reaction. When rate of the reaction is independent to the concentration of the reactants, it called zero order reaction.
Answer to Problem 4.34SP
The rate of the reaction would not change if the reaction is run in half the volume of solvent because the rate of the reaction depends upon the concentration of 1-bromobutane and methoxide ion.
Explanation of Solution
The rate equation of the given reaction is expressed as,
Where,
The rate equation shows that the rate of reaction depends upon the concentration of 1-bromobutane and methoxide ion. There is no effect on the rate of the reaction if concentration of solvent is changed. Therefore, the rate of the reaction would not change if the reaction is run in half the volume of solvent.
Want to see more full solutions like this?
Chapter 4 Solutions
ORGANIC CHEMISTRY
- Dr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v Varrow_forwardExperiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forwardRel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forward
- Illustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forwardDraw the following molecule: (Z)-1-chloro-1-butenearrow_forwardIdentify the molecule as having a(n) E, Z, cis, or trans configuration. CH3 H₁₂C ○ E ○ z ○ cis transarrow_forward
- Identify the molecule as having a(n) E, Z, cis, or trans configuration. H₂C- CH3 О Е ○ cis ○ transarrow_forwardThe decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...arrow_forwardDon't used hand raitingarrow_forward
- CS2(g) →CS(g) + S(g) The rate law is Rate = k[CS2] where k = 1.6 × 10−6 s−¹. S What is the concentration of CS2 after 5 hours if the initial concentration is 0.25 M?arrow_forwardCS2(g) → CS(g) + S(g) The rate law is Rate = k [CS2] where k = 1.6 × 10-6 s−1. S Calculate the half-life.arrow_forwardThe following is a first order reaction where the rate constant, k, is 6.29 x 10-3 min-*** What is the half-life? C2H4 C2H2 + H2arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)