EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100663987
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.22P
A landscape architect is planning an artificial waterfall in a city park. Water flowing at 1.70 m/s will leave the end of a horizontal channel at the top of a vertical wall h = 2.35 m high, and from there it will fall into a pool (Fig. P4.22). (a) Will the space behind the waterfall be wide enough for a pedestrian walkway? (b) To sell her plan to the city council, the architect wants to build a model to standard scale, which is one-twelfth actual size. How fast should the water flow in the channel in the model?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A landscape architect is planning an artificial waterfall in a city park. Water flowing at 0.750 m/s leaves the end of a horizontal channel at the top of a vertical wall h = 2.35 m high and falls into a pool. (a) How far from the wall will the water land? Will the space behind the waterfall be wide enough for a pedestrian walkway? (b) To sell her plan to the city council, the architect wants to build a model to standard scale, one-twelfth actual size. How fast should the water flow in the channel in the model?
Firemen use a high-pressure hose to shoot a stream of water at a burning building. The water has a speed of 25.0 m>s as it leaves the end of the hose and then exhibits projectile motion. The firemen adjust the angle of elevation a of the hose until the water takes 3.00 s to reach a building 45.0 m away. Ignore air resistance; assume that the end of the hose is at ground level. (a) Find a. (b) Find the speed and acceleration of the water at the highest point in its trajectory. (c) How high above the ground does the water strike the building, and how fast is it moving just before it hits the building?
Each second, 5 525 m3 of water flows over the 670-m-wide cliff of the Horseshoe Falls portion of Niagara Falls. The water is approximately 2 m deep as it reaches the cliff. What is its speed at that instant?
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 4 - Consider the following controls in an automobile...Ch. 4 - (i) As a projectile thrown at an upward angle...Ch. 4 - Rank the launch angles for the five paths in...Ch. 4 - A particle moves in a circular path of radius r...Ch. 4 - A particle moves along a path, and its speed...Ch. 4 - Figure OQ4.1 shows a bird's-eye view of a car...Ch. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - A girl, moving at 8 m/s on in-line skates, is...Ch. 4 - A sailor drops a wrench front the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - Prob. 4.11OQCh. 4 - Prob. 4.12OQCh. 4 - In which of the following situations is the moving...Ch. 4 - Prob. 4.1CQCh. 4 - Ail ice skater is executing a figure eight,...Ch. 4 - If you know the position vectors of a particle at...Ch. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - Prob. 4.5CQCh. 4 - Prob. 4.6CQCh. 4 - Explain whether or not the following particles...Ch. 4 - A motorist drives south at 20.0 m/s for 3.00 min,...Ch. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - A golf ball is hit off a tee at the edge of a...Ch. 4 - A particle initially located at the origin has an...Ch. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - A fish swimming in a horizontal plane has velocity...Ch. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - An astronaut on a strange planet finds that she...Ch. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - In a local bar. a customer slides an empty beer...Ch. 4 - A projectile is fired in such a way that its...Ch. 4 - To start an avalanche on a mountain slope, an...Ch. 4 - Chinook salmon are able to move through water...Ch. 4 - A rock is thrown upward from level ground in such...Ch. 4 - The speed of a projectile when it reaches its...Ch. 4 - A ball is tossed from an upper-story window of a...Ch. 4 - A firefighter, a distance d from a burning...Ch. 4 - A landscape architect is planning an artificial...Ch. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - The motion of a human body through space can be...Ch. 4 - A soccer player kicks a rock horizontally off a...Ch. 4 - A projectile is fired from the top of a cliff of...Ch. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - The record distance in the sport of throwing...Ch. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Casting molten metal is important in many...Ch. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Section 4.5 Tangential and Radial Acceleration...Ch. 4 - A train slows down as it rounds a sharp horizontal...Ch. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - An airplane maintains a speed of 630 km/h relative...Ch. 4 - A moving beltway at an airport has a speed 1 and a...Ch. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - A bolt drops from the ceiling of a moving train...Ch. 4 - A river has a steady speed of 0.500 m/s. A student...Ch. 4 - A river flows with a steady speed v. A student...Ch. 4 - A Coast Guard cutter detects an unidentified ship...Ch. 4 - A science student is riding on a flatcar of a...Ch. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - A ball is thrown with an initial speed i at an...Ch. 4 - Why is the following situation impassible? A...Ch. 4 - A particle starts from the origin with velocity...Ch. 4 - The Vomit Comet. In microgravity astronaut...Ch. 4 - A basketball player is standing on the floor 10.0...Ch. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - A flea is at point on a horizontal turntable,...Ch. 4 - Towns A and B in Figure P4.64 are 80.0 km apart. A...Ch. 4 - A catapult launches a rocket at an angle of 53.0...Ch. 4 - A cannon with a muzzle speed of 1 000 m/s is used...Ch. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - An astronaut on the surface of the Moon fires a...Ch. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - A hawk is flying horizontally at 10.0 m/s in a...Ch. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - A truck loaded with cannonball watermelons stops...Ch. 4 - A car is parked on a steep incline, making an...Ch. 4 - An aging coyote cannot run fast enough to catch a...Ch. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Do not hurt yourself; do not strike your hand...Ch. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - The water in a river flows uniformly at a constant...Ch. 4 - A person standing at the top of a hemispherical...Ch. 4 - A dive-bomber has a velocity or 280 m/s at ail...Ch. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - An enemy ship is on the east side of a mountain...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The very large water tank in Fig. P3.147 is dischargingthrough a 4-in-diameter pipe. The pump is running, with aperformance curve h p ≈ 40 - 4 Q 2 , with h p in feet and Q inft 3 /s. Estimate the discharge fl ow rate in ft 3 /s if the pipefriction loss is 1.5( V 2 /2 g ).arrow_forwardA cylindrical container is being filled with water at a rate of 10π cubic meters per minute. The radius of the base is 20 meters while the height of the container is 20 meters. How fast does the water rise in the container?A lifeguard needs to get to the opposite end of a circular pool with a radius of r. He swims with a speed v and runs at speed 2v. What is the minimum travel time for the lifeguard in terms of r and v?arrow_forwardA kayaker needs to paddle north across a 100 m-wide harbor. The tide is going out, creating a tidal current that flows to the east at 2.0 m/s. The kayaker can paddle with a speed of 3.0 m/s. Express your answer in degrees measured north of east.arrow_forward
- Firemen are shooting a stream of water at a burning building using a high-pressure hose that shoots out the water with a speed of 25.0 m/sm/s as it leaves the end of the hose. Once it leaves the hose, the water moves in projectile motion. The firemen adjust the angle of elevation αα of the hose until the water takes 3.00 ss to reach a building 45.0 mm away. You can ignore air resistance; assume that the end of the hose is at ground level.arrow_forwardThe town of Calculusville is 95 m above sea level and the town of Vectorville is 178 m above sea level. The two towns are 4.8 km apart along a straight, smooth road. A family decides to move from Calculusville to Vectorville. They pack all their belongings in a trailer hitched to their SUV. The SUV pulls the trailer up the road using a force, in newtons, defined by the vector F = [25 000, 14 000]. a) Find the force drawing the trailer up the hill and the force, perpendicular to the hill, tending to lift it. b) What is the work done by the SUV in pulling the trailer up the hill? What is the work done in raising the altitude of the trailer? d) Explain why your answers to parts b) and c) are different.arrow_forwardA 0.20-km wide river has a uniform flow speed of 3.0 m/s toward the east. A boat with a speed of 8.0 m/s relative to the water leaves the south bank and heads in such a way that it crosses to a point directly north of its departure point. How long does it take the boat to cross the river? 23 s 29 s 027 s 0 25 s 017 S p q# 11 p. 242 chap 7arrow_forward
- A snow-covered ski slope makes an angle of 0slone = 30.0° with the horizontal. When a ski jumper plummets onto the hill, a parcel of splashed snow is thrown up to a maximum displacement of 1.60 m at 0, = 18.0° from the vertical in the uphill snow direction as shown in the figure below. snow Oglope (a) Find the component of its maximum displacement parallel to the surface. m (b) Find the component of its maximum displacement perpendicular to the surface.arrow_forwardProblem 3: Water leaves a fireman’s hose (held near the ground) with an initial velocity v0 = 16 m/s at an angle θ = 31.5° above horizontal. Assume the water acts as a projectile that moves without air resistance. Use a Cartesian coordinate system with the origin at the hose nozzle position, as shown. Part (b) At what horizontal distance d from the building base, where should the fireman place the hose for the water to reach its maximum height as it strikes the building? Express this distance, d, in terms of v0, θ, and g.arrow_forwardA landscape architect is planning an artificial waterfall in a city park. Water flowing at 1.70 m/s will leave the end of a horizontal channel at the top of a vertical wall h = 2.35 m high, and from there it will fall into a pool (Fig. P3.42). (a) Will the space behind the waterfall be wide enough for a pedestrian walkway? (b) To sell her plan to the city council, the architect wants to build a model to standard scale, which is one-twelfth actual size. How fast should the water flow in the channel in the model? Figure P3.42arrow_forward
- A radar station sends a signal to a ship which is located a distance 13.8 kilometers from the station at bearing 136° clockwise from the north. At the same moment, a helicopter is at a horizontal range of 19.6 kilometers, at bearing 146° clockwise from the north, with an elevation of 2.56 kilometers. Let east be the î direction, north be the ĵ direction, and up be the direction. a) What If? The ship begins to sink at a rate of 5.50 m/s. Write the position vector (in km) of the ship relative to the helicopter as a function of time as the ship sinks. Assume that the helicopter remains hovering at its initial position and that the sinking rate remains the same even after the ship sinks under the surface.arrow_forwarda) A wind turbine with two or four hollow hemispherical cups connected to a pivot is commonly uscd to measure wind speed. Consider a wind turbine with four 8-cm- diameter cups with a center-to-center distance of 40 cm, as shown in Fig. PI1-35. The pivot is stuck as a result of some malfunction, and the cups stop rotating. For a wind speed of 15 m/s and air density of 1.25 kg/m3, determine the maximum torque this turbine applies on the pivot. A hemisphere at two different orientations for Re > 10 40 cm C04arrow_forwardFirefighters use a high-pressure hose to shoot a stream of water at a burning building. The water has a speed of 25.0 m/s as it leaves the end of the hose and then exhibits projectile motion. The firefighters adjust the angle of elevation a of the hose until the water takes 3.00 s to reach a building 45.0 m away. Ignore air resistance; assume that the end of the hose is at ground level. (a) Find a. (b) Find the speed and acceleration of the water at the highest point in its trajectory. (c) How high above the ground does the water strike the building, and how fast is it moving just before it hits the building?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY