
Solid Waste Engineering
3rd Edition
ISBN: 9781305635203
Author: Worrell, William A.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.1P
To determine
The air velocity required for pneumatic conveyors to move wood chips
Expert Solution & Answer

Answer to Problem 4.1P
Explanation of Solution
Given information:
Diameter of wood chips
Bulk density of wood chips
Concept used:
Calculation:
Conclusion:
The air velocity required for pneumatic conveyors to move wood chips is
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For the gravity concrete dam shown in the figure, the following data are available:
Unit weight of concrete (y)-2.4 ton/m
Neglect Wave pressure, silt pressure, ice force and earth quake force)
-0.65, (7)-1 ton/m
Find factor of safety against sliding and overturning (F.Sa & FS), If heel and toe stresses (Pa &
Pen) are 57.17ton/m² and 84.53 ton/m² respectively.
w.s.l
83m
Solve and sketch on paper
10m
80m
8m
Need assistance with d.
2. A series of gears are mounted on a 40mm diameter steel shaft. Take G = 75 GPa.
(i) Draw the torque load diagram.
(ii) Determine the angle of twist of gear B relative to gear A.
(iii) Determine the maximum shear stress and it's location along the shaft.
600 N-m
900 N-m
200 mm
200 mm
200 mm
500 Nm
300 N·m
200 mm
500 N-m
Knowledge Booster
Similar questions
- 1. The figure below shows a circular shaft with three sections. The length of each section is 50mm. (E 500 MPa). = (i) Draw the axial load diagram of the circular shaft. (ii) Determine the average normal stress at points A, B and C. (iii) Determine the maximum deformation and it's location along the shaft. 10 mm 5 mm 5 mm B 300 N A 900 N 800 N C 200 Narrow_forward02: For the gravity concrete dam shown in the figure, (the vertical stresses at toe and heel ((Pmax & Pmin) are 199 and 52 ton/m respectively. following data are available:- -Unit weight of concrete (ycone)-24 ton/m³ -Neglect Wave pressure, silt pressure, ice force and earth quake force. #-0.65 Find factor of safety against sliding and overturning (F.Sslid & F.Sover) AS 115 m 8 m 120 m Solve with sketch on paperarrow_forwardplease solve and neglect the distance between the two angles for simplecalculationsarrow_forward
- Determine the required solids retention time (SRT) of a completely mixed activated sludge aeration tank for a conventional activated sludge system treating a design flow rate of 34,560 m³/d, where the effluent standards are 30.0 mg/L for BODs and 30.0 mg/L for total suspended solids (TSS). Assume that the BOD5 of the effluent TSS is 70% of the TSS concentration. Assume the BODs concentration leaving the primary clarifier is 128 mg/L that the MLVSS concentration (X₂) is 2,500 mg/L. Assume the following values for the growth constants: Ks 100 mg/L BODS ⚫ Hm - 2.5 d 1 kd = 0.050 d 1 Y = 0.50 mg VSS/mg BODs removed Express your answer in days and round to the nearest 0.1.arrow_forwardFor the gravity concrete dam shown in the figure, the following data are available: Unit weight of concrete (7)-2.4 ton/m Neglect Wave pressure, silt pressure, ice force and earth quake force) -0.65, (7)-1 ton/m' Solve on paper and sketch Find factor of safety against sliding and overturning (F.Sa & F.S), If heel and toe stresses (Pain & P) are 57.17ton/m2 and 84.53 ton/m² respectively. Solve in table on paper w.s.l 83m 10m 8m 80marrow_forward1. Find moments of inertia around horizontal and vertical centroid axes for given 6 cross sections. 30cm 4) "T 0cm 1116 5) 20cm 5cm 6)arrow_forward
- 1. Find moments of inertia around horizontal and vertical centroid axes for given 6 cross sections. 1) 30cm 5cm 10cm 20cm 2) 3)arrow_forwardAn anchored sheet-pile bulkhead is shown in the figure below. Let L₁ = 2 m. L₂ =6 m. l₁ = 1 m = 17 kN/m². sat -18.86 kN/m², '=32°, and c=27 kN/m². Use the free earth support method. Anchor Sand = 0 Water table L Sand Ysat c' = 0 Clay = 0 1. Determine the theoretical depth of embedment, D. (Enter your answer to three significant figures.) D= m 2. Calculate the anchor force per unit length of the sheet-pile wall. (Enter your answer to three significant figures.) F= kN/marrow_forwardCalculate the dry mass of activated sludge (✗a) produced in wastewater treatment system where the flow rate is 7,500 m³/day, the BOD concentration in the primary effluent (i.e., the BOD concentration in the wastewater going to the aeration basin) is 75 mg/L, the soluble BOD concentration in the liquid effluent of the secondary clarifier is 10 mg/L, and the system is operating with an SRT of 3 days. Assume true yield is 0.5 g VSS per g BOD and the decay rate (i.e., bч or kd) is equal to 0.1 days 1. Assume the system does not achieve nitrification and that the mass of cell debris, nonbiodegradable VSS, and influent inert TSS is negigible. Express your answer in kg/day and round to the nearest 0.1.arrow_forward
- In a school, there are three clubs: Drama Club, Music Club, and debating Club. Some students are members of multiple clubs, while others are only members of one club. a. How would you represent this scenario using set notation and Venn Diagram?arrow_forwardDetermine the required volume of a completely mixed activated sludge aeration tank for a conventional activated sludge system treating a design flow rate of 34,560 m³/d, where the effluent standards are 30.0 mg/L for BOD5 and 30.0 mg/L for total suspended solids (TSS). Assume that the BOD5 of the effluent TSS is 70% of the TSS concentration. Assume the BOD5 concentration leaving the primary clarifier is 128 mg/L that the MLVSS concentration (Xa) is 2,500 mg/L. Assume the following values for the growth constants: • K = 100 mg/L BOD5 • μm = 2.5 d−1 • kd = 0.050 d 1 Y = 0.50 mg VSS/mg BOD5 removed Express your answer in m³ and round to the nearest integer.arrow_forwardDetermine the daily volume of methane and total gas produced in an anaerobic digester if the biosolids flow rate is 200 m³/d and the COD concentration going into the reactor is 5,000 g/m³. Assume yield is 0.05 g VSS/g COD, that there is 90% COD removal, and that methane is 50% of the total gas volume. Assume that actual gas production at the operating temperature is 0.4 L of CH4 per g of COD. Express your answer in m³/d and round to the nearest integer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Residential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning

Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,

Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning

Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning

Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning

Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,

Residential Construction Academy: House Wiring (M...
Civil Engineering
ISBN:9781285852225
Author:Gregory W Fletcher
Publisher:Cengage Learning