
(a)
Interpretation:
The steady-state gain of the equation
Concept introduction:
Steady-state gain is the steady-state value of transfer function which has been attended by a given unit step in the input.

Answer to Problem 4.1E
The steady-stategain of equations as:
Explanation of Solution
Given:
The transfer equation is
Calculation:
The steady-state gain can be expressed as:
Substituting in the given equation,
Steady-state value can be given as:
Hence, the steady-state gain of equations is
(b)
Interpretation:
Whether the output will be bounded for all the values of
Concept introduction:
Steady-state gain is the steady-state value of transfer function which has attended by given unit step in the input.

Answer to Problem 4.1E
The
If the ratio of
Explanation of Solution
Given:
The transfer equation is
Calculation:
The steady-state gain can be expressed as:
Substituting in the given equation,
Steady-state value can be given as:
Hence, the steady-state gain of equations is
This
If ratio of
Want to see more full solutions like this?
- Recitation 11 Problem 2 Eight fluid ounces (1 qt = fl 32 oz) of a beverage in a glass at 23.0 °C is to be cooled by adding ice and stirring. The properties of the beverage may be taken to be those of liquid water. The enthalpy of the ice relative to liquid water at the triple point is -348 kJ/kg. Estimate the mass of ice (g) that must melt to bring the liquid temperature to 4.0 °C, neglecting energy losses to the surroundings. (Note: For this isobaric batch process, the energy balance reduces to Q = AH)arrow_forwardA solid slab of 5.15 wt% agar gel at 278 K is 6.00 mm thick and contains a uniform concentration of urea of 0.2 kmol/m3. Diffusion is only in the direction through two parallel flat surfaces 6.00 mm apart. The slab is suddenly immersed in pure turbulent water so that the surface resistance can be assumed to be negligible; i.e, the convective coefficient hm is very large. The diffusivity of urea in the agar is 4.72e-10 m2/s. a) Calculate the concentration at the midpoint of the slab and (b) 1.50 mm from the surface after 19 h. c) if the thickness of the slab is halved, what would be the midpoint concentration in 19 h.arrow_forwardThe answer for the specific molar volume of nitrogen gas is 12.089x10^(-5) m^3/mol. How was this answer determined? You need to use the ideal gas law to determine the specific molar volume. Do not determine the third specific enthalpy. Also, how is the answer for (H3 specific enthalpy) of nitrogen gas (N2) equals to minus 1.26 KJ/mol???? The answer for the energy balance is minus 2320 KJ/s.arrow_forward
- 220 20 g. 8 20 22 230 240 250 260 270 280 290 300 310 320 100 110 120 120 130 130 Enthalpy At Saturation (kJ/kg Dry Air) 140 150 160 170 180 190 200 210 Wet-Bulb se Seturation Temperature 80 8- ㄜ 30 40 50 60 70 Dry Bulb temperature (°C) g 80 90 100 110 120 10 10 330 60 340 350 360 370 380 390 400 170 990 00 50 09 Moisture Content (g/kg Dry Air) 30 40 70 60 100arrow_forward4) A bioproduct in an aqueous liquid is to be concentrated in a climbing film evaporator at a pressure of 200 mm Hg absolute. The maximum allowable entrained liquid is 0.001 kg liquid per kg of vapor. Equations to calculate the vapor pressure of water, liquid density, and vapor density are given in problem 10.3 of your textbook. Calculate the maximum allowable velocity of the vapor from the evaporator.arrow_forward2) A protein is to be salted out of solution using ammonium sulfate. The protein solution is initially at 20 g/L. A plot of soluble protein vs. ammonium sulfate concentration is given below. a) What are the Cohn equation coefficients? b) Calculate the concentration of ammonium sulfate to precipitate out 99% of the protein. 4 2 y= -2.63x+7.54 R² = 1 In(S) 0 2 4 6 -2 -4 [Ammonium sulfate] (mol/L)arrow_forward
- 3) A batch crystallization process was developed in a 2-L (working volume) reactor in the laboratory. The reactor impeller was 4.2 cm in diameter and operated at a speed of 715 rpm, which was the minimum speed required to fully suspend the crystals. You are asked to scale-up the crystallization process to an 850-L reactor. The fluid has the density and viscosity of water. a) Assuming geometric similarity between the small and large reactors, calculate the impeller diameter of the large reactor. b) Calculate the impeller speed in the large reactor if scaling up based on constant power per volume. c) Calculate the impeller speed in the large reactor if scaling up based on constant impeller tip speed. d) Calculate the impeller speed in the large reactor if scaling up based on minimum speed for full suspension of crystals.arrow_forward6) A wet cake of biological solids needs to be dried by blowing dry air across the top of the surface. Internal diffusion controls the mass transfer during drying. The moisture content of the cake is initially 60%, and the diffusion coefficient of water in the cake has been estimated to be 8.2 x 105 cm²/s. Estimate the cake depth that can be dried to a final moisture content of 5% in 24 h.arrow_forwardFind v(t) fort > 0 in the circuit of Fig. below. Assume the switch has been open for a long time and is closed at t = 0. Calculate v (t) at t = 0.5. 10 V 202 ww +21 t=0 60 ww 13 F SVarrow_forward
- Your client wants to separate a mixture of n-hexane, n-heptane, and methylcyclohexane (MCH) into nearly pure product streams, with n-heptane and methylcyclohexane being the light and heavy keys, respectively. However, n-heptane and methylcyclohexane have close boiling points, so normal fractionation could not be used. Assess how extractive distillation using aniline as a solvent can be used to separate the mixturearrow_forward2- An inlet water solution of 100 kg/h containing 0.010 wt fraction nicotine (A) in water is stripped with a kerosene stream of 200 kg/h containing 0.0005 wt fraction nicotine in a countercurrent-stage tower. The water and kerosene are essentially immiscible in each other. It is desired to reduce the concentration of the exit water to 0.0010 wt fraction nicotine. Determine the theoretical number of stages needed. The equilibrium data are as follows, with x the weight fraction of nicotine in the water solution and y in the kerosene: X y X y 0.001010 0.000806 0.00746 0.00682 0.00246 0.001959 0.00988 0.00904 0.00500 0.00454 0.0202 0.0185arrow_forward3- An aqueous feed solution of 1000 kg/h of acetic acid-water solution contains 30.0 wt % acetic acid and is to be extracted in a countercurrent multistage process with pure isopropyl ether to reduce the acid concentration to 2.0 wt % acid in the final raffinate. a. Calculate the minimum solvent flow rate that can be used. b. If 2500 kg/h of ether solvent is used, determine the number of theoretical stages required. Water Layer (wt %) Isopropyl Ether Layer (wt %) Acetic Acid Water Isopropyl Ether Acetic Acid Water Isopropyl Ether 0 98.8 1.2 0 0.6 99.4 0.69 98.1 1.2 0.18 0.5 99.3 1.41 97.1 1.5 0.37 0.7 98.9 2.89 95.5 1.6 0.79 0.8 98.4 6.42 91.7 1.9 1.93 1.0 97.1 13.30 84.4 2.3 4.82 1.9 93.3 25.50 71.1 3.4 11.40 3.9 84.7 36.70 58.9 4.4 21.60 6.9 71.5 44.30 45.1 10.6 31.10 10.8 58.1 46.40 37.1 16.5 36.20 15.1 48.7arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





