
Concept explainers
(a)
The validity of the given statement for copper by comparing the vacancy concentration when there is one vacancy in the atom positions surrounding each atom with the equilibrium vacancy.

Answer to Problem 4.18P
The statement that the FCC metals melt when there is on the average one vacancy in the atom positions surrounding each atom is wrong.
Explanation of Solution
Given:
The vacancy formation enthalpy in copper is
The melting temperature of copper is
Formula Used:
The formula to calculate the concentration of vacancies in silicon is given by,
Here,
Calculations:
The concentration of vacancies is calculated as,
Substitute
In FCC structure every atom is surrounded by
The vacancy concentration for this condition is given by,
Thus, the vacancy concentration is less at the melting temperature, when compared to the given statement.
Conclusion:
Therefore, the statement that the FCC metals melt when there is on the average one vacancy in the atom positions surrounding each atom is wrong.
(b)
The entropy of mixing the equilibrium number of vacancies into a copper crystal at the melting temperature.

Answer to Problem 4.18P
The entropy of mixing the equilibrium number of vacancies into a copper crystal at the melting temperature is
Explanation of Solution
Given:
The total number of crystal sites is equal to
Formula Used:
The concentration of copper for mixing is given by,
Here,
The entropy of mixing equilibrium vacancy concentration into copper at the melting temperature is given by,
Here,
Calculations:
The entropy of mixing the equilibrium number of vacancies into a copper crystal at the melting temperature is calculated as,
Substitute
Substitute
Conclusion:
Therefore, the entropy of mixing the equilibrium number of vacancies into a copper crystal at the melting temperature is
(c)
The change in the Gibbs free energy.

Answer to Problem 4.18P
The change in Gibbs free energy is
Explanation of Solution
Formula Used:
The change in Gibbs free energy when the equilibrium vacancy concentration forms relative to that of copper are given by,
Here,
Calculations:
The concentration of vacancies is calculated as,
Substitute
Thus, the change in Gibbs free energy when the equilibrium vacancy concentration forms relative to that of copper is
Conclusion:
Therefore, the change in Gibbs free energy is
Want to see more full solutions like this?
Chapter 4 Solutions
Materials Science and Engineering Properties, SI Edition
- Design a simply supported one-way pavement slab for a factored applied moment, Mu = 10 ft-kip. Use f c’ = 5,000 psi and f y = 60,000 psi. The slab is in permanent contact with soil.Hint:• Estimate a minimum slab thickness for deflection control.• Solve for the slab steel based on cover for soil contactarrow_forwardThe figures below shows the framing plan and section of a reinforced concrete floor system. Floor beams are shown as dotted lines. The weight of the ceiling and floor finishing is 6 psf, that of the mechanical and electrical systems is 7 psf, and the weight of the partitions is 180 psf. The floor live load is 105 psf. The 7 in. thick slab exterior bay (S-1) is reinforced with #5 rebars @ 10 in. o.c. as the main positive reinforcement at the mid span, and #4 @ 109 in. for the shrinkage and temperature reinforcement. The panel is simply supported on the exterior edge and monolithic with the beam at the interior edge. Check the adequacy of the slab. Use the ACI moment coefficients. fc’ = 6,000 psi and fy = 60,000 psi. The slab is in an interior location. Hint: • Estimate total dead load. Find factored maximum positive bending moment in the end span. • Find design positive moment capacity. • Compare and determine adequacy, including safety and economy.arrow_forward1 For an reinforced concrete two-way slab shown in figure under the load (P). (the slab continuous over all edges - all sides are fixed), Determine (By using yield line theory): A- Draw the Yield line Pattern B- Determine the moment m C- Find The required flexural steel to resist the loads causing the slab to collapse if P = 200 KN, f=28 MPa, fy = 420 MPa d = 120 mm. Use 10 mm bars. (Prin = 0.002) +2 m 6 m -8 m 3 marrow_forward
- At a point on the surface of a generator shaft the stresses are σx = -55MPa, σy = 25MPa and Txy = -20MPa as shown in Figure Q1. (a) Using either analytical method or Mohr's circle determine the following: Stresses acting on an element inclined at an angle 0 = 35°, i. ii. iii. The maximum shear stress The principal stresses and B. 25 MPa A 55 MPa 20 MPa Figure 1:Material stress state (b) Consider that the Young's modulus for the material, E = 200kPa and Poisson's ratio, v = 0.25. i. ii. determine associate strains for the material with the stress as shown in Figure 1 determine associate strains for the material with the stress at element oriented at 35° (question 1a(i))arrow_forwardA study reports data on the effects of the drug tamoxifen on change in the level of cortisol-binding globulin (CBG) of patients during treatment. With age = x and ACBG = y, summary values are n = 26, Σx, = 1612, Σ(x, - x)² = 3756.96, Σy, = 281.9, Σ(y, - y)² = 465.34, and Ex,y,= 16,745. (a) Compute a 90% CI for the true correlation coefficient p. (Round your answers to four decimal places.) (b) Test Hop=-0.5 versus H: p< -0.5 at level 0.05. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to four decimal places.) z = P-value = State the conclusion in the problem context. ◇ Reject Ho. There is no evidence that p < -0.5. ○ Fail to reject Ho. There is evidence that p < -0.5. Reject Ho. There is evidence that p < -0.5. Fail to reject Ho. There is no evidence that p < -0.5. (c) In a regression analysis of y on x, what proportion of variation in change of cortisol-binding globulin level could be explained by variation in…arrow_forwardFor the frame and loading shown, determine the reactions at A and C. 24 Last 2 student ID+50 lbs 24 A 3 in. B A=Last 2 student ID+10 Inch B=Last 2 student ID+40 Inch A B Darrow_forward
- The figures below shows the framing plan and section of a reinforced concrete floor system. Floor beams are shown as dotted lines. The weight of the ceiling and floor finishing is 6 psf, that of the mechanical and electrical systems is 7 psf, and the weight of the partitions is 180 psf. The floor live load is 105 psf. The 7 in. thick slab exterior bay (S-1) is reinforced with #5 rebars @ 10 in. o.c. as the main positive reinforcement at the mid span, and #4 @ 109 in. for the shrinkage and temperature reinforcement. The panel is simply supported on the exterior edge and monolithic with the beam at the interior edge. Check the adequacy of the slab. Use the ACI moment coefficients. fc’ = 6,000 psi and fy = 60,000 psi. The slab is in an interior location. Hint: • Estimate total dead load. Find factored maximum positive bending moment in the end span. • Find design positive moment capacity. • Compare and determine adequacy, including safety and economy. C Darrow_forwardFor an reinforced concrete two-way slab shown in figure under the load (P). (the slab continuous over all edges - all sides are fixed), Determine (By using yield line theory): A- Draw the Yield line Pattern B- Determine the moment m C- Find The required flexural steel to resist the loads causing the slab to collapse if P = 200 KN, f=28 MPa, fy = 420 MPa d = 120 mm. Use 10 mm bars. Draw the yield line and (Qmin = 0.002) 2m solve PO 6 m 3 m -8 marrow_forwardFind the internal torques for segments AB, BC, and CD (in N-m) by drawing the internal torque diagram, the maximum torsional shear on the shaft in MPa, and the relative rotation of section A with respect to section D in degrees.arrow_forward
- For an reinforced concrete two-way slab shown in figure under the load (P). (the slab continuous over all edges - all sides are fixed), Solve by using equilibrium method A- Draw the Yield line Pattern B- Determine the moment m C- Find The required flexural steel to resist the loads causing the slab to collapse if P = 200 kN, f=28 MPa, fy = 420 MPa d = 120 mm. Use 10 mm bars. (Pmin = 0.002) 2 m 6 m -8 m 3 marrow_forwardA double-T simply supported concrete beam its cross section is shown in Figure, is prestressed with 2 tendons each 400 mm². Determine the allowable service load. Use span 12 m, fse = 1300 MPa, fe = 40 MPa, y = 25 kN/m³. = 1200 mm >09 *100* As = 400 +100+ As = 400 400 1400+arrow_forwardA double-T simply supported concrete beam its cross section is shown in Figure, is prestressed with 2 tendons each 400 mm². Determine the allowable service load. Use span 12 m, fse = 1300 MPa, fc = 40 MPa, y = 25 kN/m³. = 1200 mm >09< *100* As = 400 +100+ As = 400 400 1400+arrow_forward
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
