
International Edition---engineering Mechanics: Statics 4th Edition
4th Edition
ISBN: 9781305856240
Author: Pytel
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.185RP
Find the magnitude of the pin reaction at B caused by the weight
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Determine the resultant stress at points P and Q.
For the notched specimen with h = 0.13 m and r =11 mm, calculate the nominal stress for F=5 kN.
F
h
F
25 mm
Please submit your answer in the units of MPa.
A tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 49%.
60
Su = 66 ksi
Stress σ (ksi)
Sy = 39 ksi
400B
Se = 36 ksi
Hot-rolled 1020 steel
20
F
0
0
10 20 30
40 50 60
70 80 90 100 110 120 130 140 150 160
Strain € (%)
0
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Area ratio R
0.1
0.2
0.3
0.4
0.5
Area reduction A,
What value of Su is applicable to this location?
0.6
Chapter 4 Solutions
International Edition---engineering Mechanics: Statics 4th Edition
Ch. 4 - Each of the bodies shown is homogeneous and has a...Ch. 4 - Each of the bodies shown is homogeneous and has a...Ch. 4 - Each of the bodies shown is homogeneous and has a...Ch. 4 - The homogeneous bar weighs 12 lb. It is resting on...Ch. 4 - The homogeneous beam AB weighs 400 lb. For each...Ch. 4 - The homogeneous triangular plate has a mass of 12...Ch. 4 - The bracket of negligible weight is supported by a...Ch. 4 - The figure models the handle of the water cock...Ch. 4 - The high-pressure water cock is rigidly attached...Ch. 4 - Draw the FBD of the entire frame, assuming that...
Ch. 4 - The figure is a model for member CDE of the frame...Ch. 4 - The homogeneous cylinder of weight Wrests in a...Ch. 4 - Calculate the force P that is required to hold the...Ch. 4 - The 60-lb homogeneous disk is suspended from a...Ch. 4 - The 180-kg uniform boom ABC, supported by a...Ch. 4 - The table lamp consists of two uniform arms, each...Ch. 4 - At what angle will the lamp in Prob. 4.16 be in...Ch. 4 - The bent beam ABC is supported by a pin at B and a...Ch. 4 - Compute all reactions at the base A of the traffic...Ch. 4 - The man is holding up the 35-kg ladder ABC by...Ch. 4 - The 1200-lb homogeneous block is placed on rollers...Ch. 4 - The uniform plank ABC weighs 400 N. It is...Ch. 4 - The center of gravity of the 850-N man is at G. If...Ch. 4 - The homogeneous 340-lb sign is suspended from...Ch. 4 - When the truck is empty, it weighs 6000 lb and its...Ch. 4 - The homogeneous bar AB weighs 25 lb. Determine the...Ch. 4 - Determine the smallest horizontal force P that...Ch. 4 - The homogeneous beam AB weighing 800 lb carries...Ch. 4 - The homogeneous 40-kg bar ABC is held in position...Ch. 4 - The horizontal force P is applied to the handle of...Ch. 4 - The homogeneous plate of weight W is suspended...Ch. 4 - Neglecting the mass of the beam, compute the...Ch. 4 - The 1200-kg car is being lowered slowly onto the...Ch. 4 - The crate weighing 400 lb is supported by three...Ch. 4 - Find the smallest value of P for which the crate...Ch. 4 - Determine the rope tension T for which the pulley...Ch. 4 - The 40-kg homogeneous disk is resting on an...Ch. 4 - The 40-kghomogeneous disk is placed on a...Ch. 4 - The mass of the uniform bar AB is 80 kg. Calculate...Ch. 4 - The mechanism shown is a modified Geneva drive-a...Ch. 4 - The center of gravity of the 3000-lb car is at G....Ch. 4 - The 30-lb block is held in place on the smooth...Ch. 4 - The vertical post is supported by two cables (the...Ch. 4 - The uniform ladder of weight W is raised slowly by...Ch. 4 - The uniform, 30-lb ladder is raised slowly by...Ch. 4 - The 90-kg man, whose center of gravity is at G, is...Ch. 4 - The bar ABC is constrained by the pin support A...Ch. 4 - The tensioning mechanism of a magnetic tape drive...Ch. 4 - The homogeneous 300-kg cylinder is pulled over the...Ch. 4 - Compute the magnitudes of the reactions at pin A...Ch. 4 - Each of the sandbags piled on the 380-lb uniform...Ch. 4 - The 18-ft pole is supported by a pin at A and a...Ch. 4 - The supporting structure of the billboard is...Ch. 4 - The self-regulating floodgate ABC, pinned at B, is...Ch. 4 - The cantilever beam is built into a wall at O....Ch. 4 - Determine the force F required to keep the 200-kg...Ch. 4 - The uniform rod AB of weight W is supported by the...Ch. 4 - A machine operator produces the tension Tin the...Ch. 4 - The dump truck consists of a chassis and a tray,...Ch. 4 - The centers of gravity of the 50-kg lift truck and...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - For Probs. 4.61–4.68, (a) draw the free-body...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - The two uniform cylinders, each of weight W, are...Ch. 4 - Draw the FBDs for the following: (a) bar ABC with...Ch. 4 - Draw the FBDs for the beam ABC and the segments AB...Ch. 4 - Draw the FBDs for the entire structure and the...Ch. 4 - The beam consists of the bars AB and BC connected...Ch. 4 - For the frame shown, determine the magnitude of...Ch. 4 - Determine the magnitudes of the pin reactions at A...Ch. 4 - The bars AB and AC are joined by a pin at A and a...Ch. 4 - Neglecting the weights of the members, determine...Ch. 4 - Calculate the magnitudes of the pin reactions at A...Ch. 4 - Determine the magnitude of the pin reaction at A...Ch. 4 - Neglecting friction and the weights of the...Ch. 4 - When activated by the force P, the gripper on a...Ch. 4 - Determine the axle loads (normal forces at A, B,...Ch. 4 - Determine the force P that would produce a tensile...Ch. 4 - The pulley-cable system supports the 150-lb...Ch. 4 - Determine the contact force between the smooth...Ch. 4 - Compute the tension in the cable and the contact...Ch. 4 - Determine the magnitude of the pin reaction at B....Ch. 4 - Determine the tension in the cable at B, given...Ch. 4 - Compute the magnitude of the pin reaction at B....Ch. 4 - Neglecting the weight of the frame, find the...Ch. 4 - Determine the clamping force at A due to the 15-lb...Ch. 4 - Compute the tension in the cable BD when the...Ch. 4 - Calculate the reactions at the built-in support at...Ch. 4 - Determine the magnitudes of the roller reactions...Ch. 4 - The linkage of the braking system consists of the...Ch. 4 - The window washers A and B support themselves and...Ch. 4 - The figure shows a wire cutter. Determine the...Ch. 4 - Find the tension T in the cable when the 180-N...Ch. 4 - The 400-kg drum is held by tongs of negligible...Ch. 4 - Compute the magnitudes of all forces acting on...Ch. 4 - Calculate all forces acting on member CDB.Ch. 4 - The automatic drilling robot must sustain a thrust...Ch. 4 - Determine the clamping (vertical) force applied by...Ch. 4 - Determine the axial force in member BC of the...Ch. 4 - Neglecting friction, determine the relationship...Ch. 4 - Find the magnitudes of the pin reactions at A and...Ch. 4 - The load in the bucket of a skid steer loader is...Ch. 4 - Determine the magnitude of the roller reaction at...Ch. 4 - The tool shown is used to crimp terminals onto...Ch. 4 - The 12-lb force is applied to the handle of the...Ch. 4 - The blade of the bulldozer is rigidly attached to...Ch. 4 - Find the magnitudes of the pin reactions at A, C,...Ch. 4 - The pins at the end of the retaining-ring spreader...Ch. 4 - Determine the magnitudes of the support reactions...Ch. 4 - Find the magnitude of the pin reaction at C....Ch. 4 - For the pliers shown, determine the relationship...Ch. 4 - The device shown is an overload prevention...Ch. 4 - The figure is a schematic of a wire cutter....Ch. 4 - The hinge shown is the type used on the doors of...Ch. 4 - Determine the force in the hydraulic cylinder EF...Ch. 4 - Determine the horizontal force P that would keep...Ch. 4 - Determine the magnitudes of the forces acting on...Ch. 4 - Determine the angle at which the bar AB is in...Ch. 4 - The automobile, with center of gravity at G, is...Ch. 4 - The figure shows a three-pin arch. Determine the...Ch. 4 - The center of gravity of the nonhomogeneous bar AB...Ch. 4 - When suspended from two cables, the rocket assumes...Ch. 4 - The pump oiler is operated by pressing on the...Ch. 4 - The uniform 240-lb bar AB is held in the position...Ch. 4 - Find the force P required to (a) push; and (b)...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Identify all the zero-force members in the four...Ch. 4 - The walkway ABC of the footbridge is stiffened by...Ch. 4 - Find the force in member EF.Ch. 4 - Determine the forces in members AE, BE, and ED.Ch. 4 - Determine the reaction at E and the force in each...Ch. 4 - Determine the force in member AD of the truss.Ch. 4 - Determine the force in member BE of the truss.Ch. 4 - Show that all diagonal members of the truss carry...Ch. 4 - Determine the forces in members FG and AB in terms...Ch. 4 - Determine the forces in members BC, BG, and FG.Ch. 4 - Determine the forces in members EF, BF, and BC.Ch. 4 - Compute the forces in members EF, NE and NO.Ch. 4 - Repeat Prob. 4.152 assuming that the 400-kN force...Ch. 4 - Determine the forces in members BG, CI, and CD.Ch. 4 - Assuming that P=48000lb and that it may be applied...Ch. 4 - Calculate the forces in members BC, CF, and FG.Ch. 4 - Find the forces in members CD, DH, and HI.Ch. 4 - Determine the forces in members CD and DF.Ch. 4 - Compute the forces in members CD and JK, given...Ch. 4 - If PCD=6000lb and PGD=1000lb (both compression),...Ch. 4 - Determine the forces in members EF, BF, and BC.Ch. 4 - Determine the forces in members AC, AD, and DE.Ch. 4 - Determine the forces in members GI, PH, and GH....Ch. 4 - Determine the forces in members CD, IJ, and NJ of...Ch. 4 - Calculate the forces in members AB and DE.Ch. 4 - (a) Find the forces in members CE, CF, and DF. (b)...Ch. 4 - Determine the forces in members BC and BE and the...Ch. 4 - A couple acting on the winch at G slowly raises...Ch. 4 - The uniform, 20-kg bar is placed between two...Ch. 4 - The 320-lb homogeneous spool is placed on the...Ch. 4 - Determine the magnitude of the pin reaction at A,...Ch. 4 - Determine the couple C that will hold the bar AB...Ch. 4 - The 800-lb force is applied to the pin at E....Ch. 4 - The weight W=6kN hangs from the cable which passes...Ch. 4 - The 2000-lb and 6000-lb forces are applied to the...Ch. 4 - The two couples act at the midpoints of bars AB...Ch. 4 - Determine the forces in members AC and AD of the...Ch. 4 - Determine the angle for which the uniform bar of...Ch. 4 - Determine the magnitude of the force exerted by...Ch. 4 - Calculate the forces in members (a) DE; (b) BE;...Ch. 4 - Determine the ratio P/Q for which the parallel...Ch. 4 - The 30-lb block C rests on the uniform 14-lb bar...Ch. 4 - The 30-lb homogeneous bar AB supports the 60-lb...Ch. 4 - Determine the forces in members (a) EF; and (b)...Ch. 4 - Find the magnitude of the pin reaction at B caused...Ch. 4 - The breaking strength of the cable FG that...Ch. 4 - Determine the forces in members GH, BH, and BC of...Ch. 4 - The 80-N force is applied to the handle of the...Ch. 4 - The tongs shown are designed for lifting blocks of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 40%. 60 Su = 66 ksi Stress σ (ksi) 40 20 Sy= = 39 ksi Se = 36 ksi Hot-rolled 1020 steel F | G | H 0 10 20 30 40 50 60 0 70 80 90 100 110 120 130 140 150 160 Strain € (%) ☐ T 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Area ratio R 0.1 0.2 0.3 0.4 0.5 Area reduction A, What value of Sy is applicable to this location? 0.6arrow_forwardA vertical .2m by .2m square plate is exposed to saturated water vapor at atmospheric pressure. If the surface temperature is 80 degrees C and the flow is laminar, estimate the loal heat transfer coefficents at the middles and at the bottom of the plate.arrow_forwardA transformer that is 10 cm long, 6.2 cm wide, and 5 cm high is to be cooled by attaching a 10 cm by 6.2 cm wide polished aluminum heat sink(emissivity=.03) to its top surface. The heat sink has seven fins, which are 5 mm high, 2mm thick, and 10 cm long. A fan blows air at 25 degrees C parallel to the passages between the fins. The heat sink is to dissipate 12W of heat, and the base temp of the ehat sink is not to exceed 60 degrees C. Assuming the fins and the base plate to be nearly isothermal and the radiation heat transfer to be negligible, determine the minimum free-stream velocity the fan needs to supply to avoid overheating. Assume the flow is laminar over the entire finned surface of the transformer.arrow_forward
- I need a mechanical engineering expert to solve this question,no Ai pleasearrow_forwardCan you give me the meaning of Combination spanner and Give Examples of Spannersarrow_forwardHW8 A shaft fitted with a flywheel rotates at 650 r.p.m. and drives a machine. The torque of machine varies in a cyclic manner over a period of 2 revolutions. The torque rises from 650 N-m to 2200 N-m uniformly during 110° and remains constant for the following 270°. It then falls uniformly to 600 N-m during the next 100° and remains constant for the end cycle, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 180 kg with radius of gyration of 35 cm. HW9arrow_forward
- units of h. show all workarrow_forward4. Steam flows steadily through a turbine at a rate of 47,000 lbm/h, entering at 1000 psia and 800°F and leaving at 6 psia as saturated vapor. If the power generated by the turbine is 3.7 MW, determine the rate of heat loss from the steam.arrow_forward3. Water enters the constant 125-mm inside-diameter tubes of a boiler at 7.5 MPa and 60°C and leaves the tubes at 6 MPa and 500°C with a velocity of 75 m/s. Calculate the velocity of the water at the tube inlet and the inlet volume flow rate.arrow_forward
- 2. A piston-cylinder device contains 2.4 kg of nitrogen initially at 120 kPa and 27°C. The nitrogen is now compressed slowly in a polytropic process during which PV1.3 = constant until the volume is reduced by one-half. Determine the work done and the heat transfer for this process.arrow_forward1. 1.25 m³ of saturated liquid water at 225°C is expanded isothermally in a closed system until its quality is 75 percent. Determine the total work produced by this expansion, in kJ.arrow_forwardAn undamped single-degree-of-freedom system is subjected to dynamic excitation as shown in Figure 1.• System properties: m = 1, c = 0, k = (6π)2.• Force excitation: p(t) = posin(ωt) where po = 9 and ω = 2π.• Initial conditions: u(t = 0) = 0 and ̇u(t = 0) = 0.Please, complete Parts (a) through (d) using any computational tool of your preference. The preferred toolis MATLAB. Print and turn in a single pdf file that will include your code/calculations and your plots.(a) Generate the solution using a linear interpolation of the load over each time step (note that hereyou can use the undamped coefficients). Plot the displacement response for the first 4 seconds andcompare to the exact closed form solution. Repeat using the following time step sizes, ∆t = 0.01,0.05, 0.15, 0.20 seconds. Include the closed form solution and the solutions for different ∆t values in asingle plot. Please, provide your observations by comparing the closed form solution with the solutionsderived using the four…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License