(a)
Interpretation:
The name of following ionic compound -
Concept Introduction:
Chemical formulas and names for ionic compounds containing polyatomic ions:
Ionic compounds containing positive and negative charges present must add to zero.
If more than one polyatomic ion is present in a compound, the chemical formula can be written as a polyatomic ion is enclose in parentheses and a subscript, placed outside of the parentheses. Example-
Sometimes same element is present in two different locations. For example,
(b)
Interpretation:
The name of following ionic compound -
Concept Introduction:
Chemical formulas and names for ionic compounds containing polyatomic ions:
Ionic compounds containing positive and negative charges present must add to zero.
If more than one polyatomic ion is present in a compound, the chemical formula can be written as a polyatomic ion is enclose in parentheses and a subscript, placed outside of the parentheses. Example-
Sometimes same element is present in two different locations. For example,
(c)
Interpretation:
The name of following ionic compound -
Concept Introduction:
Chemical formulas and names for ionic compounds containing polyatomic ions:
Ionic compounds containing positive and negative charges present must add to zero.
If more than one polyatomic ion is present in a compound, the chemical formula can be written as a polyatomic ion is enclose in parentheses and a subscript, placed outside of the parentheses. Example-
Sometimes same element is present in two different locations. For example,
(d)
Interpretation:
The name of following ionic compound -
Concept Introduction:
Chemical formulas and names for ionic compounds containing polyatomic ions:
Ionic compounds containing positive and negative charges present must add to zero.
If more than one polyatomic ion is present in a compound, the chemical formula can be written as a polyatomic ion is enclose in parentheses and a subscript, placed outside of the parentheses. Example-
Sometimes same element is present in two different locations. For example,
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
- Don't used hand raitingarrow_forwardDon't used hand raitingarrow_forwardRelative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 100 HS-NJ-0547 80 60 31 20 S1 84 M+ absent 10 30 40 50 60 70 80 90 100 100- MS2016-05353CM 80- 60 40 20 135 137 S2 164 166 0-m 25 50 75 100 125 150 m/z 60 100 MS-NJ-09-43 40 20 20 80 45 S3 25 50 75 100 125 150 175 m/zarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardPredicting the pro Predict the major products of this organic reaction. Explanation Check m ☐ + 5 1.03 Click and drag t drawing a stru 2. (CH₂)₂S 3 2 © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardstarting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... X Explanation Check C टे Br T Add/Remove step ☐ Br Br © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacarrow_forward
- Don't used hand raitingarrow_forwardRelative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 100 HS-NJ-0547 80 60 31 20 S1 84 M+ absent 10 30 40 50 60 70 80 90 100 100- MS2016-05353CM 80- 60 40 20 135 137 S2 164 166 0-m 25 50 75 100 125 150 m/z 60 100 MS-NJ-09-43 40 20 20 80 45 S3 25 50 75 100 125 150 175 m/zarrow_forwardPart II. Given two isomers: 2-methylpentane (A) and 2,2-dimethyl butane (B) answer the following: (a) match structures of isomers given their mass spectra below (spectra A and spectra B) (b) Draw the fragments given the following prominent peaks from each spectrum: Spectra A m/2 =43 and 1/2-57 spectra B m/2 = 43 (c) why is 1/2=57 peak in spectrum A more intense compared to the same peak in spectrum B. Relative abundance Relative abundance 100 A 50 29 29 0 10 -0 -0 100 B 50 720 30 41 43 57 71 4-0 40 50 60 70 m/z 43 57 8-0 m/z = 86 M 90 100 71 m/z = 86 M -O 0 10 20 30 40 50 60 70 80 -88 m/z 90 100arrow_forward
- Part IV. C6H5 CH2CH2OH is an aromatic compound which was subjected to Electron Ionization - mass spectrometry (El-MS) analysis. Prominent m/2 values: m/2 = 104 and m/2 = 9) was obtained. Draw the structures of these fragments.arrow_forwardFor each reaction shown below follow the curved arrows to complete each equationby showing the structure of the products. Identify the acid, the base, the conjugated acid andconjugated base. Consutl the pKa table and choose the direciton theequilibrium goes. However show the curved arrows. Please explain if possible.arrow_forwardA molecule shows peaks at 1379, 1327, 1249, 739 cm-1. Draw a diagram of the energy levels for such a molecule. Draw arrows for the possible transitions that could occur for the molecule. In the diagram imagine exciting an electron, what are its various options for getting back to the ground state? What process would promote radiation less decay? What do you expect for the lifetime of an electron in the T1 state? Why is phosphorescence emission weak in most substances? What could you do to a sample to enhance the likelihood that phosphorescence would occur over radiationless decay?arrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning