
(a)
Interpretation:
The given reaction of Salicylic acid with acetic acid for the formation of aspirin has to be balanced.
Concept Introduction:
Balancing the equation:
- There is a Law for conversion of mass in a
chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants. - First write the skeletal reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Place suitable coefficients in front of reactants as well as products until the number of atoms on each side (reactants and products) becomes equal.
(a)

Explanation of Solution
Given reaction equation:
Balancing the chemical Equation:
Count the number of atoms on each side of the reaction.
Atom | Reactant side | Product side |
9 | 9 | |
10 | 10 | |
5 | 5 |
Yes, the number of atoms present on each side of the reaction is same. Hence, the given equation is already balanced.
(b)
Interpretation:
For the given reaction, the number of moles of aspirin that would form from
(b)

Explanation of Solution
Given reaction equation:
From the balanced equation, it is known that one mole of salicylic acid forms one mole of aspirin as product. That is,
For the given moles of salicylic acid, the number of moles of aspirin formed is,
Therefore, the number of moles of aspirin produced from given moles of salicylic acid is
(c)
Interpretation:
For the given reaction, the amout (in
Concept Introduction:
Moles:
Mole of the substance is found by dividing the mass of the substance by its molar mass.
Mass:
Mass of the compound is calculated by mole of the compound multiplied with molar mass of the compound.
(c)

Explanation of Solution
Given reaction equation:
From the balanced equation, it is known that one mole of salicylic acid forms one mole of aspirin as product. That is,
For the given moles of salicylic acid, the number of moles of aspirin formed is,
Thus, the number of moles of aspirin produced from given moles of salicylic acid is
The molar mass of aspirin is
Determine the mass of aspirin formed as follows,
Therefore, the amount of aspirin produced from given moles of salicylic acid is
(d)
Interpretation:
For the given reaction, the amout (in
Concept Introduction:
Refer part (c)
(d)

Explanation of Solution
Given reaction equation:
From the balanced equation, it is known that one mole of salicylic acid and one mole of acetic acid forms one mole of aspirin as product. That is,
From the moles of salicylic acid, the moles of acetic acid required is calculated as follows,
Thus, the number of moles of acetic acid that reacts with given moles of salicylic acid is
The molar mass of acetic acid is
Determine the mass of acetic acid required to react is found as follows,
Therefore, the amount of acetic acid required to react with given moles of salicylic acid is
(e)
Interpretation:
The amount (in
Concept Introduction:
Refer part (c)
(e)

Explanation of Solution
Given reaction equation:
The amount of acetic acid required to react with given moles of salicylic acid is
The molar mass of acetic acid is
Determine the moles of acetic acid as follows,
Thus, the moles of acetic acid is
From the balanced equation, it is known that one mole of salicylic acid and one mole of acetic acid forms one mole of aspirin as product. That is,
From the moles of acetic acid, the moles of aspirin formed is calculated as follows,
Thus, the moles of aspirin is
The molar mass of aspirin is
Determine the mass of aspirin formed as follows,
Therefore, the amount of aspirin produced from given moles of salicylic acid is
Want to see more full solutions like this?
Chapter 4 Solutions
General, Organic, and Biochemistry
- Please answer the question for the reactions, thank youarrow_forwardWhat is the product of the following reaction? Please include a detailed explanation of what is happening in this question. Include a drawing showing how the reagent is reacting with the catalyst to produce the correct product. The correct answer is IV.arrow_forwardPlease complete the reactions, thank youarrow_forward
- Consider the synthesis. What is compound Y? Please explain what is happening in this question. Provide a detailed explanation and a drawing to show how the compound Y creates the product. The correct answer is D.arrow_forwardWhat would be the major product of the following reaction? Please include a detailed explanation of what is happening in this question. Include steps and a drawing to show this reaction proceeds and how the final product is formed. The correct answer is B. I put answer D and I don't really understand what is going on in the question.arrow_forwardWhat is the product of the following reaction? Please explain what is happening in this question. Provide a detailed explanation and a drawing showing how the reagent is reacting with the catalysts to product the correct product. The correct answer is B.arrow_forward
- What is the missing intermediate 1 and the final product 2. Please include a detailed explanation explaining the steps of malonic ester synthesis. Please include drawings of the intermediate and how it occurs and how the final product is former.arrow_forwardWhat would be the reagents and conditions above and below the arrow that will complete the proposed acetoacetic ester synthesis? If it cannot be done efficiently, then I will choose that answer. There could be 2 or 4 reagents involved. Please provide a detailed explanation and drawings showing how it would proceed with the correct reagents.arrow_forwardFor benzene, the ∆H° of vaporization is 30.72 kJ/mol and the ∆S° of vaporization is 86.97 J/mol・K. At 1.00 atm and 228.0 K, what is the ∆G° of vaporization for benzene, in kJ/mol?arrow_forward
- The reaction Q(g) + R(g) → Z(l) is shown to be exothermic. Which of the following is true concerning the reaction. it is spontaneous only at High T, it is spontaneous at low T it is nonspontaneous at all T it is spontanrous at all T. it is non spontaneous only at low T.arrow_forwardThe reaction Q(g) + R(g) → Z(l) is shown to be exothermic. Which of the following is true concerning the reactionarrow_forwardWhich of the following has the largest standard molar entropy, S° (298.15 K) He H2 NaCl KBr Hgarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





