Describe in words how you would do each of the following preparations. Then give the molecular equation for each preparation.
- a CuCl2(s) from CuSO4(s)
- b Ca(C2H3O2)2(s) from CaCO3(s)
- c NaNO3(s) from Na2SO3(s)
- d MgCl2(s) from Mg(OH)2(s)
(a)
Interpretation:
Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
Answer to Problem 4.103QP
The molecular equation
Explanation of Solution
In order to prepare
The molecular equation for the reaction is given below.
(b)
Interpretation:
Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
Answer to Problem 4.103QP
The molecular equation
Explanation of Solution
In order to prepare calcium acetate
The molecular equation for the reaction is given below.
(c)
Interpretation:
Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
Answer to Problem 4.103QP
The molecular equation
Explanation of Solution
In order to prepare
The molecular equation for the reaction is given below.
(d)
Interpretation:
Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
Answer to Problem 4.103QP
The molecular equation
Explanation of Solution
In order to prepare
The molecular equation for the reaction is given below.
Want to see more full solutions like this?
Chapter 4 Solutions
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
Additional Science Textbook Solutions
Organic Chemistry
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Microbiology Fundamentals: A Clinical Approach
MARINE BIOLOGY
Cosmic Perspective Fundamentals
- 3B: Convert the starting material into the chiral epoxytriol below. OH OH = OH OHarrow_forward3D: Convert the aromatic triketone to the 1,3,5-triethylcyclohexane shown below. ہوئےarrow_forwardIndicate how to find the energy difference between two levels in cm-1, knowing that its value is 2.5x10-25 joules.arrow_forward
- The gyromagnetic ratio (gamma) for 1H is 2.675x108 s-1 T-1. If the applied field is 1,409 T what will be the separation between nuclear energy levels?arrow_forwardChances Ad ~stract one 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $4th total Statistical pro 21 total 2 H A 2H 래 • 4H totul < 3°C-H werkest bund - abstraction he leads to then mo fac a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? рос 6 -વા J Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Clarrow_forwardWhat is the lone pair or charge that surrounds the nitrogen here to give it that negative charge?arrow_forward
- Last Name, Firs Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $ 4th total 21 total 4H total ZH 2H Statistical H < 3°C-H werkst - product bund abstraction here leads to the mo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Proclict 6 Number of Unique Mono-Chlorinated Products f Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary 'H H-Cl Waterfoxarrow_forward2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.arrow_forwardI find the solution way too brief and unsatisfactory as it does not clearly explain the solution provided in the problem.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardthis is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning