Chemistry: A Molecular Approach
3rd Edition
ISBN: 9780321809247
Author: Nivaldo J. Tro
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 40E
Interpretation Introduction
To determine: The mixture that produces the greatest amount of product. Also, the number of molecules of CO2 formed from the reaction mixture.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. Consider the following reaction: 2 NO (g) + O2 (g) 2 2 NO2 (g); Kc = 6.9 x
105 A 5.0 L vessel contains 0.060 mol NO, 1.0 mol O2, and 0.80 mol NO2. Is
this system at equilibrium? If the system is not at equilibrium, does the
reaction proceed in the forward or reverse direction to reach equilibrium?
For every one molecule of NaHCO3(s) there is one molecule of CO2(g) that forms:
NaHCO3(s) + CH3CO2H(aq) --> CO2(g) + H2O(l) + NaCH3CO2(aq)
This means that if we know how many moles of gas we need, we need the same number of moles of sodium bicarbonate to produce it.
Now, we need something to fill with gas. I'll be filling a 1-quart sealable plastic bag.
1 quart is 946 mL (0.946 L). We can use the ideal gas law to determine how much gas (in moles) is needed to fill 946 mL. Remember there are four variables for the ideal gas law.
Ideal Gas Law: PV = nRT
P = pressure: typically 715 mm Hg in Spokane <-- unit dictates which R to use
V = volume: 1 quart bag = 0.946 L <-- must be in Liters
T = room temperature: 20 °C in my lab, +273 = 293 K <-- must be Kelvin
n = moles: what we are solving for
I used atmospheric pressure in mm Hg, so I'll have to pick the R value with "mm Hg" in the units:
R = 62.4 L × m m H g K × m o l
Now, use these values to calculate how many moles of…
For the following reaction
2 SO2(g) + O2(g) <-> 2 SO3(g) + heat
If the equilibrium situation is stressed by removing SO3(g), the reaction will shift toward
Chapter 4 Solutions
Chemistry: A Molecular Approach
Ch. 4 - Prob. 1SAQCh. 4 - Q2. Sodium and chlorine react to form sodium...Ch. 4 - Prob. 3SAQCh. 4 - Prob. 4SAQCh. 4 - Prob. 5SAQCh. 4 - Prob. 6SAQCh. 4 - Prob. 7SAQCh. 4 - Prob. 8SAQCh. 4 - Prob. 9SAQCh. 4 - Q10. What is the net ionic equation for the...
Ch. 4 - Q11. What is the net ionic equation for the...Ch. 4 - Q12. What is the net ionic equation for the...Ch. 4 - Prob. 13SAQCh. 4 - Prob. 14SAQCh. 4 - Prob. 15SAQCh. 4 - 1. What is reaction stoichiometry? What is the...Ch. 4 - Prob. 2ECh. 4 - Prob. 3ECh. 4 - Prob. 4ECh. 4 - 5. What is molarity? How is it useful?
Ch. 4 - 6. Explain how a strong electrolyte, a weak...Ch. 4 - 7. Explain the difference between a strong acid...Ch. 4 - Prob. 8ECh. 4 - Prob. 9ECh. 4 - Prob. 10ECh. 4 - Prob. 11ECh. 4 - Prob. 12ECh. 4 - Prob. 13ECh. 4 - Prob. 14ECh. 4 - 15. What is an acid–base reaction? Give an...Ch. 4 - 16. Explain the principles behind an acid–base...Ch. 4 - 17. What is a gas-evolution reaction? Give an...Ch. 4 - 18. What reactant types give rise to gas-evolution...Ch. 4 - Prob. 19ECh. 4 - Prob. 20ECh. 4 - Prob. 21ECh. 4 - Prob. 22ECh. 4 - 23. In a redox reaction, which reactant is the...Ch. 4 - Prob. 24ECh. 4 - Prob. 25ECh. 4 - Prob. 26ECh. 4 - 27. Calculate how many moles of NO2 form when each...Ch. 4 - 28. Calculate how many moles of NH3 form when each...Ch. 4 - Prob. 29ECh. 4 - Prob. 30ECh. 4 - Prob. 31ECh. 4 - Prob. 32ECh. 4 - 33. For each of the reactions, calculate the mass...Ch. 4 - 34. For each of the reactions, calculate the mass...Ch. 4 - 35. For each of the acid–base reactions, calculate...Ch. 4 - Prob. 36ECh. 4 - 37. Find theFor the following reaction, determine ...Ch. 4 - 38. Find the limiting reactant for each initial...Ch. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - 42. Calculate the theoretical yield of product (in...Ch. 4 - Zinc sulfide reacts with oxygen according to the...Ch. 4 - 44. Iron(II) sulfide reacts with hydrochloric acid...Ch. 4 - Prob. 45ECh. 4 - Prob. 46ECh. 4 - 47. Iron(III) oxide reacts with carbon monoxide...Ch. 4 - 48. Elemental phosphorus reacts with chlorine gas...Ch. 4 - 49. Lead ions can be precipitated from solution...Ch. 4 - Prob. 50ECh. 4 - Prob. 51ECh. 4 - Prob. 52ECh. 4 - 53. Calculate the molarity of each solution.
a....Ch. 4 - Prob. 54ECh. 4 - 55. What is the molarity of NO3– in each...Ch. 4 - Prob. 56ECh. 4 - Prob. 57ECh. 4 - 58. What volume of 0.200 M ethanol solution...Ch. 4 - Prob. 59ECh. 4 - Prob. 60ECh. 4 - 61. If 123 mL of a 1.1 M glucose solution is...Ch. 4 - 62. If 3.5 L of a 4.8 M SrCl2 solution is diluted...Ch. 4 - 63. To what volume should you dilute 50.0 mL of a...Ch. 4 - 64. To what volume should you dilute 25 mL of a...Ch. 4 - Prob. 65ECh. 4 - 66. Consider the reaction:
Li2S(aq) + Co(NO3)2(aq)...Ch. 4 - 67. What is the minimum amount of 6.0 M H2SO4...Ch. 4 - Prob. 68ECh. 4 - 69. A 25.0-mL sample of a 1.20 M potassium...Ch. 4 - Prob. 70ECh. 4 - Prob. 71ECh. 4 - Prob. 72ECh. 4 - Prob. 73ECh. 4 - Prob. 74ECh. 4 - Prob. 75ECh. 4 - 76. Complete and balance each equation. If no...Ch. 4 - Write a molecular equation for the precipitation...Ch. 4 - 78. Write a molecular equation for the...Ch. 4 - Prob. 79ECh. 4 - 80. Write balanced complete ionic and net ionic...Ch. 4 - Prob. 81ECh. 4 - Prob. 82ECh. 4 - 83. Write balanced molecular and net ionic...Ch. 4 - Prob. 84ECh. 4 - Prob. 85ECh. 4 - Prob. 86ECh. 4 - Prob. 87ECh. 4 - 90. A 30.00-mL sample of an unknown H3PO4 solution...Ch. 4 - Prob. 89ECh. 4 - Prob. 90ECh. 4 - Prob. 91ECh. 4 - Prob. 92ECh. 4 - Prob. 93ECh. 4 - Prob. 94ECh. 4 - Prob. 95ECh. 4 - Prob. 96ECh. 4 - Prob. 97ECh. 4 - Prob. 98ECh. 4 - Prob. 99ECh. 4 - Prob. 100ECh. 4 - 103. People sometimes use sodium bicarbonate as an...Ch. 4 - 104. Toilet bowl cleaners often contain...Ch. 4 - Prob. 103ECh. 4 - Many home barbeques are fueled with propane gas...Ch. 4 - Prob. 105ECh. 4 - Prob. 106ECh. 4 - Prob. 107ECh. 4 - 110. A hydrochloric acid solution will neutralize...Ch. 4 - 111. Predict the products and write a balanced...Ch. 4 - 112. Predict the products and write a balanced...Ch. 4 - Prob. 111ECh. 4 - Prob. 112ECh. 4 - Prob. 113ECh. 4 - Prob. 114ECh. 4 - 117. The nitrogen in sodium nitrate and in...Ch. 4 - 118. Find the volume of 0.110 M hydrochloric acid...Ch. 4 - Prob. 117ECh. 4 - 120. We prepare a solution by mixing 0.10 L of...Ch. 4 - Prob. 119ECh. 4 - Prob. 120ECh. 4 - Prob. 121ECh. 4 - 124. An important reaction that takes place in a...Ch. 4 - 125. A liquid fuel mixture contains 30.35% hexane...Ch. 4 - 126. Titanium occurs in the magnetic mineral...Ch. 4 - Prob. 125ECh. 4 - Prob. 126ECh. 4 - Prob. 127ECh. 4 - Prob. 128ECh. 4 - 131. Recall from Section 4.6 that sodium carbonate...Ch. 4 - 132. Lead poisoning is a serious condition...Ch. 4 - Prob. 131ECh. 4 - Prob. 132ECh. 4 - Prob. 133ECh. 4 - Prob. 134ECh. 4 - Prob. 135ECh. 4 - Prob. 136ECh. 4 - Prob. 137ECh. 4 - Consider the generic ionic compounds with the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The hydrocarbon naphthalene was frequently used in mothballs until recently, when it was discovered that human inhalation of naphthalene vapors can lead to hemolytic anemia. Naphthalene is 93.71% carbon by mass, and a 0.256-mole sample of naphthalene has a mass of 32.8 g. What is the molecular formula of naphthalene? This compound works as a pesticide in mothballs by. sublimation of the .solid so that it fumigates enclosed spaces with its vapors according to the equation Naphthalene(s)naphthalene(g)K=4.29106(at298K) If 3.00 g solid naphthalene is placed into an enclosed space with a volume of 5.00 L at 25C, what percentage of the naphthalene will have sublimed once equilibrium bas been established?arrow_forward11) Into a 1.00 liter flask is placed 0.822 moles of SO3. At equilibrium 36.7% of the SO3 has decomposed. What is the value of the equilibrium constant? 2 SO3 (g) « 2 SO2 (g) + O2 (g)Kc = ?arrow_forwardExactly 1.0 mol N2O4 is placed in an empty 1.0-L container and allowed to reach equilibrium described by the equation N2O4(g) 2NO2(g). If at equilibrium the N2O4 is 28.0% dissociated, what is the value of the equilibrium constant, Kc, for the reaction under these conditions? (need to show your calculation.)arrow_forward
- What is the equilibrium expression for the following reaction? CH4(g) + 202(g)= CO2(g) + 2H20(g)arrow_forwardAt room temperature and 1 atm carbon dioxide (CO2) is aarrow_forwardSuppose a 250. mL flask is filled with 0.80 mol of SO, and 1.5 mol of SO3. This reaction becomes possible: 3' 2S0,(g) +02(g) = 2SO;(g) Complete the table below, so that it lists the initial molarity of each compound, the change in molarity of each compound due to the reaction, and the equilibrium molarity of each compound after the reaction has come to equilibrium. Use x to stand for the unknown change in the molarity of O,. You can leave out the M symbol for molarity. so, so, 2. initial change equilibriumarrow_forward
- What is Keq? The equilibrium constant, Kea, expresses the relationship between the reactants and products for a reaction at equilibrium. There are two types of equilibrium reactions: Homogenous: The states of matter are all the same. Heterogeneous: The states of matter differ. 1. Classify the following reactions as homogeneous or heterogeneous (highlight one) a. 2 SO₂(g) + O₂(g) = 2 SO³(g) homogeneous or heterogeneous b. 2NaHCO3(s) Na₂CO3(s) + H₂O(g) + CO₂(g) homogeneous or heterogeneous c. 3 H₂(g) + N₂(g) = 2 NH3(g) homogeneous or heterogeneous homogeneous or heterogeneous d. H₂O(g) + C(s) = H₂(g) + CO(g) homogeneous or heterogeneous e. Cu(s) + 2 AgCl(aq) = CuCl,(aq) + 2 Ag(s) riting Equilibrium Constants - Homogeneous Reactions is the universal equilibrium constant for reactions. It is a ratio of the amount of product to e amount of reactant in the reaction mixture. To write an equilibrium constant expression: Put the products on top and the reactants on bottom. contrations in…arrow_forwardSuppose a 500. mL flask is filled with 0.80 mol of SO, and 1.6 mol of SO3. This reaction becomes possible: 250, (g) +0,(g) = 2so;(g) Complete the table below, so that it lists the initial molarity of each compound, the change in molarity of each compound due to the reaction, and the equilibrium molarity of each compound after the reaction has come to equilibrium. Use x to stand for the unknown change in the molarity of O,. You can leave out the M symbol for molarity. so, so, initial change equilibrium oloarrow_forwardWrite the balanced chemical reaction for this equilibrium expression: K= [H2O]P[O2] [H2O2]?arrow_forward
- Consider the reaction: N2(g) + 3H2(g) 2NH3(g) where Kc = 0.500 at 400 °C. If 50.0 L reaction vessel contains 1.000 mole N₂; 3.000 mole H₂ and 0.050 mole NH3, which of the following is TRUE? The reaction based on the following parameters is in equilibrium. More ammonia will be produced as the reaction approaches equilibrium. Data provided is not enough to warrant a conclusion regarding equilibrium. More ammonia will dissociate as the reaction approaches equilibrium.arrow_forward7. Carbonate rocks, such as limestone (primarily CaCO3(s)), are often identified by adding a few drops of acid and seeing if the rock fizzes. If the rock does show bubbling, the following reaction has occurred: CaCO3(s) + 2HCl(l) CO2(g) + H2O(l) + CaCl2(aq)This reaction is performed in the laboratory, and 78 mL of CO2(g) are collected at 298 K and 1 atm. How many moles of HCl participated in this reaction?arrow_forwardAmmonification is the process by which A B C ammonia is released during the decomposition of nitrogen-containing organic compounds ammonium is converted to nitrite and nitrate in soils nitrate from soil is transformed to gaseous nitrogen compounds such as NO, N₂O, and N₂ D gaseous nitrogen is fixed to yield ammonia 4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY