UNDERSTANDING THE UNIVERSE(LL)-W/CODE
3rd Edition
ISBN: 9780393869903
Author: PALEN
Publisher: NORTON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 39QAP
To determine
The light-gathering power of telescope compared with that of the dark-adapted human eye.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The large space telescope that has been placed into an Earth orbit has an aperture diameter of 1.4
meters. What angular resolution will this telescope achieve for visible light of wavelength 2 = 6.5 x
10-7 m? Write your answer in "seconds of arc".
A new optical imaging satellite is being designed for the Maritime Domain Awareness mission. The satellite will be placed in a circular orbit at 5000 km altitude and be able to look off of nadir, giving a maximum range to the target of 7000 km. The desired resolution is 3 meters. What is the satellite's speed? Express answer in km/s to two significant digits.
The telescope of a spy satellite is reputed to be able to resolve objects 9 cm apart from an altitude of 180 km above the surface of Earth.
1) What is the diameter, in meters, of the telescope’s aperture, if its resolution is limited only by diffraction effects? Take 550 nm for the wavelength of light.
Chapter 4 Solutions
UNDERSTANDING THE UNIVERSE(LL)-W/CODE
Ch. 4.1 - Prob. 4.1CYUCh. 4.2 - Prob. 4.2CYUCh. 4.3 - Prob. 4.3CYUCh. 4 - Prob. 1QAPCh. 4 - Prob. 2QAPCh. 4 - Prob. 3QAPCh. 4 - Prob. 4QAPCh. 4 - Prob. 5QAPCh. 4 - Prob. 6QAPCh. 4 - Prob. 7QAP
Ch. 4 - Prob. 8QAPCh. 4 - Prob. 9QAPCh. 4 - Prob. 10QAPCh. 4 - Prob. 11QAPCh. 4 - Prob. 12QAPCh. 4 - Prob. 13QAPCh. 4 - Prob. 14QAPCh. 4 - Prob. 15QAPCh. 4 - Prob. 16QAPCh. 4 - Prob. 17QAPCh. 4 - Prob. 18QAPCh. 4 - Prob. 19QAPCh. 4 - Prob. 20QAPCh. 4 - Prob. 21QAPCh. 4 - Prob. 22QAPCh. 4 - Prob. 23QAPCh. 4 - Prob. 24QAPCh. 4 - Prob. 25QAPCh. 4 - Prob. 26QAPCh. 4 - Prob. 27QAPCh. 4 - Prob. 28QAPCh. 4 - Prob. 29QAPCh. 4 - Prob. 30QAPCh. 4 - Prob. 31QAPCh. 4 - Prob. 32QAPCh. 4 - Prob. 33QAPCh. 4 - Prob. 34QAPCh. 4 - Prob. 35QAPCh. 4 - Prob. 36QAPCh. 4 - Prob. 37QAPCh. 4 - Prob. 38QAPCh. 4 - Prob. 39QAPCh. 4 - Prob. 40QAPCh. 4 - Prob. 41QAPCh. 4 - Prob. 42QAPCh. 4 - Prob. 43QAPCh. 4 - Prob. 44QAPCh. 4 - Prob. 45QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The angular resolution of a radio telescope is to be 0.100 when the incident waves have a wavelength of 3.00 mm. What minimum diameter is required for the telescopes receiving dish?arrow_forwardCalculate the limit of resolution of a telescope objective having a diameter of 200 cm, if it has to detect light of wavelength 500 nm coming from a star.. (a) 610 x 10⁹ rad -9 (b) 305 x 10⁹ rad ma (c) 457.5 x 109 rad (d) 152.5 x 10⁹ radarrow_forwardA certain telescope has a 10' × 10' field of view that is re- corded using a CCD chip having 2048 x 2048 pixels. What angle on the sky corresponds to 1 pixel? What would be the di- ameter of a typical seeing disk (1" radius), in pixels?arrow_forward
- A space-based telescope can achieve a diffraction-limited angular resolution of 0.05" for red light (wavelength 700 nm). What would the resolution of the instrument be in the infrared, at wavelength 3.5 μm.arrow_forwardA new optical imaging satellite is being designed for the Maritime Domain Awareness mission. The satellite will be placed in a circular orbit at 5000 km altitude and be able to look off of nadir, giving a maximum range to the target of 7000 km. The desired resolution is 3 meters. Assuming the sensor will operate in the SWIR (λ = 1.5 μm), estimate the required diameter of the primary aperture to achieve the desired resolution at the maximum range. Report answer in meters to two significant digits. The required aperture diameter is _____ meters.arrow_forwardA diffraction-limited telescope with a 7.6 cm aperture is aimed at target 12.5 km away. Assuming light of 590 nm wavelength and neglecting air turbulence, what size details can be resolved by the telescope?arrow_forward
- What is the limit of resolution for a telescope lens with a diameter of 120 cm when it observes a star at a distance of 4 light-years? Use the wavelength of l = 550 nm in your calculations.arrow_forwardNeeds Complete typed solution with 100 %. Accuracy.arrow_forwardCompare the angular resolving power of the following imaging instruments (details of the italicized instruments are to be covered later). Take the wavelength of light as 5 × 10-7 m. (a) the eye with an effective aperture of 0.5 cm (b) a pair of binoculars using a typical aperture of the front lenses (c) the Yerkes Observatory optical telescope, with a diameter of roughly 1.0 m (d) the Manchester radiotelescope, with a diameter of 76.2 m, using microwave radiation of wavelength 22 cm Oarrow_forward
- Astronauts observing from a space station need a telescope with a resolving power of 0.6 arc second at a wavelength of 530 nm and a magnifying power of 220. Design a telescope to meet their needs.What will its light-gathering power be, compared with a dark-adapted human eye? (Assume that the pupil of your eye can open to a diameter of about 0.8 cm in dark conditions.)(State the necessary primary diameter of the telescope, in m, and the ratio of the focal lengths below.)arrow_forwardThe Atacama Large Millimeter/SubmillimeterArray (ALMA) is designed to operate over the wavelength range λ= 0.3→9.6mm. It will consist of 80 independent 12m telescopes with a maximum baseline of 18km. How large would a single-dish antenna have to be to have the same collecting area as ALMA?arrow_forwardAstronauts observing from a space station need a telescope with a resolving power of 0.6 arc second at a wavelength of 530 nm and a magnifying power of 220. Design a telescope to meet their needs. (State the necessary primary diameter of the telescope, in m, and the ratio of the focal lengths below.) What will its light-gathering power be, compared with a dark-adapted human eye? (Assume that the pupil of your eye can open to a diameter of about 0.8 cm in dark conditions.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning