UNDERSTANDING THE UNIVERSE(LL)-W/CODE
UNDERSTANDING THE UNIVERSE(LL)-W/CODE
3rd Edition
ISBN: 9780393869903
Author: PALEN
Publisher: NORTON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 1, Problem 1QAP
To determine

Whether the statement is true or false.

Expert Solution & Answer
Check Mark

Answer to Problem 1QAP

The given statement is false.

Explanation of Solution

Light travels at a speed of 3×108m/s; it is the fastest speed in the universe. Light can travel in any medium or vacuum. The distance between two astronomical objects is so large that it is difficult to measure the distance in units of kilometres or meters.

Such large distances are measured in units of light years denoted by ly . 1 light-year is the distance travelled by light in 1 year; it is equal to 9.46×1015m . Mega is the prefix used to abbreviate 106 .

Here, the distance given is 1,000 ly but one mega-light-year is equal to 1,000,000 ly.

Conclusion:

Thus, one mega-light-year is not equal to 1,000 light years. Hence, the given statement is false.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. The answer is .028 T, I just need help understanding how to do it. Please show all steps.
A ray of light from an object you want to look at strikes a mirror so that the light ray makes a 32 degree angle relative to the normal line (a line perpendicular to the surface of the mirror at the point where the ray strikes the mirror). If you want to see the object in the mirror, what angle does your line of sight need to make relative to the normal line? Give your answer as the number of degrees.
Suppose you have a converging lens with a focal length of 65 cm. You hold this lens 120 cm away from a candle. How far behind the lens should you place a notecard if you want to form a clear image of the candle, on the card? Give your answer as the number of centimeters.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY