
Concept explainers
(a)
Interpretation: The molecular equation, complete ionic equation and net ionic equation representing the formation of precipitate by the mixing of given solutions are to be predicted.
Concept introduction: The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(a)

Answer to Problem 38E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between
The precipitate so formed in the reaction is of
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. Therefore, the net ionic equation representing the formation of precipitate is shown below.
(b)
Interpretation:The molecular equation, complete ionic equation and net ionic equation representing the formation of precipitate by the mixing of given solutions are to be predicted.
Concept introduction:The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(b)

Answer to Problem 38E
The molecular equation is shown below.
The complete ionic equation is shown below.
There is no net ionic equation.
Explanation of Solution
The molecular equation representing the reaction between
There is no precipitate formed in the reaction.
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. As there is not any precipitate formed, therefore, the net ionic equation does not exist.
(c)
Interpretation:The molecular equation, complete ionic equation and net ionic equation representing the formation of precipitate by the mixing of given solutions are to be predicted.
Concept introduction:The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(c)

Answer to Problem 38E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between
The precipitate so formed in the reaction is of
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. Therefore, the net ionic equation representing the formation of precipitate is shown below.
(d)
Interpretation:The molecular equation, complete ionic equation and net ionic equation representing the formation of precipitate by the mixing of given solutions are to be predicted.
Concept introduction:The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(d)

Answer to Problem 38E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between
The precipitate so formed in the reaction is of
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. Therefore, the net ionic equation representing the formation of precipitate is shown below.
Want to see more full solutions like this?
Chapter 4 Solutions
EBK CHEMICAL PRINCIPLES
- For a certain gas-phase reaction at constant pressure, the equilibrium constant Kp is observed to double when the temperature increases from 300 K to 400 K. Calculate the enthalpy change of the reaction, Ah, using this information.arrow_forwardHydrogen bonding in water plays a key role in its physical properties. Assume that the energy required to break a hydrogen bond is approximately 8 kJ/mol. Consider a simplified two-state model where a "formed" hydrogen bond is in the ground state and a "broken" bond is in the excited state. Using this model: • Calculate the fraction of broken hydrogen bonds at T = 300 K, and also at T = 273 K and T = 373 K. • At what temperature would approximately 50% of the hydrogen bonds be broken? • What does your result imply about the accuracy or limitations of the two-state model in describing hydrogen bonding in water? Finally, applying your understanding: • Would you expect it to be easier or harder to vaporize water at higher temperatures? Why? If you were to hang wet laundry outside, would it dry more quickly on a warm summer day or on a cold winter day, assuming humidity is constant?arrow_forward(3 pts) Use the Kapustinskii equation to calculate the lattice enthalpy for MgBr2 anddiscuss any differences between this result and that from #4.arrow_forward
- (3 pts) Silver metal adopts a fcc unit cell structure and has an atomic radius of 144 pm. Fromthis information, calculate the density of silver. Show all work.arrow_forward4. (3 pts) From the information below, determine the lattice enthalpy for MgBr2. Show all work. AH/(kJ mol-¹) Sublimation of Mg(s) +148 lonization of Mg(g) +2187 to Mg2+(g) Vaporization of Br₂(1) +31 Dissociation of Br,(g) +193 Electron gain by Br(g) -331 Formation of MgBr₂(s) -524arrow_forward1. (4 pts-2 pts each part) Consider the crystal structures of NaCl, ZnS, and CsCl (not necessarily shown in this order). a. For one of the three compounds, justify that the unit cell is consistent with stoichiometry of the compound. b. In each of the crystal structures, the cations reside in certain holes in the anions' packing structures. For each compound, what type of holes are occupied by the cations and explain why those particular types of holes are preferred.arrow_forward
- (2 pts) What do you expect to happen in a Na2O crystal if a Cl− ion replaces one of the O2−ions in the lattice?arrow_forward(2 pts) WSe2 is an ionic compound semiconductor that can be made to be p-type or n-type.What must happen to the chemical composition for it to be p-type? What must happen tothe chemical composition for it to be n-type?arrow_forward8. (2 pts) Silicon semiconductors have a bandgap of 1.11 eV. What is the longest photon wavelength that can promote an electron from the valence band to the conduction band in a silicon-based photovoltaic solar cell? Show all work. E = hv = hc/λ h = 6.626 x 10-34 Js c = 3.00 x 108 m/s 1 eV 1.602 x 10-19 Jarrow_forward
- A solution containing 100.0 mL of 0.155 M EDTA buffered to pH 10.00 was titrated with 100.0 mL of 0.0152 M Hg(ClO4)2 in a cell: calomel electrode (saturated)//titration solution/Hg(l) Given the formation constant of Hg(EDTA)2-, logKf= 21.5, and alphaY4-=0.30, find out the cell voltage E. Hg2+(aq) + 2e- = Hg(l) E0= 0.852 V E' (calomel electrode, saturated KCl) = 0.241 Varrow_forwardFrom the following reduction potentials I2 (s) + 2e- = 2I- (aq) E0= 0.535 V I2 (aq) + 2e- = 2I- (aq) E0= 0.620 V I3- (aq) + 2e- = 3I- (aq) E0= 0.535 V a) Calculate the equilibrium constant for I2 (aq) + I- (aq) = I3- (aq). b) Calculate the equilibrium constant for I2 (s) + I- (aq) = I3- (aq). c) Calculate the solubility of I2 (s) in water.arrow_forward2. (3 pts) Consider the unit cell for the spinel compound, CrFe204. How many total particles are in the unit cell? Also, show how the number of particles and their positions are consistent with the CrFe204 stoichiometry - this may or may not be reflected by the particle colors in the diagram. (HINT: In the diagram, the blue particle is in an interior position while each red particle is either in a corner or face position.)arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





