Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 2P
When the Sun is directly overhead, a hawk dives toward the ground with a constant velocity of 5.00 m/s at 60.0° below the horizontal. Calculate the speed of its shadow on the level ground.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 11 m tall streetlight is positioned 16 m away from a vertical wall.
Timothy throws a tennis ball directly towards the wall with a speed of 16.6 m/s.
Assuming that the ball travels on a perfectly horizontal path 1.5 m above the ground,
at what rate is the shadow of the ball moving up the wall when it is 2 m from the
wall?
Suppose you adjust your garden hose nozzle for a fast stream of water. You point the nozzle vertically upward at a height of 1.8 mm above the ground. When you quickly turn off the nozzle, you hear the water striking the ground next to you for another 2.9 s. What is the water speed as it leaves the nozzle?
A woman stands on a bathroom scale in an elavator. the scale reads 514N when the elevator is at rest. the scale cahnges to 470N when the elavator starts to move at T=0s. find the displacement from start to T=5.61s
Chapter 4 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 4.1 - Consider the following controls in an automobile...Ch. 4.3 - (i) As a projectile thrown at an upward angle...Ch. 4.3 - Rank the launch angles for the five paths in...Ch. 4.4 - A particle moves in a circular path of radius r...Ch. 4.5 - A particle moves along a path, and its speed...Ch. 4 - Prob. 1OQCh. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - Prob. 4OQCh. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - Prob. 7OQCh. 4 - Prob. 8OQCh. 4 - A sailor drops a wrench from the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - A set of keys on the end of a string is swung...Ch. 4 - A rubber stopper on the end of a string is swung...Ch. 4 - Prob. 13OQCh. 4 - A spacecraft drifts through space at a constant...Ch. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - A projectile is launched at some angle to the...Ch. 4 - Construct motion diagrams showing the velocity and...Ch. 4 - Explain whether or not the following particles...Ch. 4 - Prob. 1PCh. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - Prob. 9PCh. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - Prob. 12PCh. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - Prob. 14PCh. 4 - A projectile is fired in such a way that its...Ch. 4 - Prob. 16PCh. 4 - Chinook salmon are able to move through water...Ch. 4 - Prob. 18PCh. 4 - The speed of a projectile when it reaches its...Ch. 4 - Prob. 20PCh. 4 - A firefighter, a distance d from a burning...Ch. 4 - Prob. 22PCh. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - Prob. 30PCh. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Prob. 35PCh. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Figure P4.40 represents the total acceleration of...Ch. 4 - Prob. 41PCh. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - A river flows with a steady speed v. A student...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - Prob. 56APCh. 4 - Prob. 57APCh. 4 - A particle starts from the origin with velocity...Ch. 4 - Prob. 59APCh. 4 - Prob. 60APCh. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - Prob. 63APCh. 4 - Prob. 64APCh. 4 - Prob. 65APCh. 4 - Prob. 66APCh. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - Prob. 69APCh. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - Prob. 71APCh. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - Prob. 76APCh. 4 - Prob. 77APCh. 4 - Prob. 78APCh. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Prob. 80APCh. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - Prob. 83CPCh. 4 - Prob. 84CPCh. 4 - Prob. 85CPCh. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - Prob. 89CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At t = 0, a particle moving in the xy plane with constant acceleration has a velocity of vi=(3.00i2.00j)m/s and is at the origin. At t = 3.00 s, the particles velocity is vf=(9.00i+7.00j)m/s. Find (a) the acceleration of the particle and (b) its coordinates at any time t.arrow_forwardA particle moving in an xy plane has components of the position vector of x = (0. Ot – 4. Ot^2 )m and y = (-4. Ot^2 + t^3 )m. Find, a. the position and the displacement vectors at t = 3.0 s, b. the average velocity between t = 0.0 s and t = 3.0 s, c. the instantaneous velocity at t = 3.0 s, d. the average acceleration between t = 0.0 s andt = 3.0 s, e. the instantaneous acceleration at t = 3.0 s.arrow_forwardA projectile is thrown at an angle theta above horizontal. The speed at B (maximum height) is equal to VB. Determine the distance AC if theta=30 degrees and VB=12m/s.arrow_forward
- A small airplane flying horizontally with a speed of 147 mi/hr at an altitude of 390 ft above a remote valley drops an emergency medical package at A. The package has a parachute which deploys at B and allows the package to descend vertically at the constant rate of 4.5 ft/sec. If the drop is designed so that the package is to reach the ground 59 seconds after release at A, determine the horizontal lead L so that the package hits the target. Neglect atmospheric resistance from A to B. B Target- Part 1 Calculate the time t₁ at which the parachute opens. B. Target- Answer: t₁ = i L sec 147 mi/hr 147 mi/hr. 390' 390'arrow_forwardA small airplane flying horizontally with a speed of 194 mi/hr at an altitude of 390 ft above a remote valley drops an emergency medical package at A. The package has a parachute which deploys at B and allows the package to descend vertically at the constant rate of 6.5 ft/sec. If the drop is designed so that the package is to reach the ground 42 seconds after release at A, determine the horizontal lead L so that the package hits the target. Neglect atmospheric resistance from A to B. B Target- L 194 mi/hr A 390'arrow_forwardWhat is the maximum width of the gorge in meters so the agent clears itarrow_forward
- A small airplane flying horizontally with a speed of 176 mi/hr at an altitude of 270 ft above a remote valley drops an emergency medical package at A. The package has a parachute which deploys at B and allows the package to descend vertically at the constant rate of 4.7 ft/sec. If the drop is designed so that the package is to reach the ground 31 seconds after release at A, determine the horizontal lead L so that the package hits the target. Neglect atmospheric resistance from A to B. B Target- L Calculate the time t₁ at which the parachute opens. B Target- Answer: t₁ = i sec 176 mi/hr 176 mi/hr 270' 270'arrow_forwardA rescue plane flying horizontally at 72.6 m/s spots a survivor in the ocean 182 m directly below and releases an emergency kit with a parachute. Because of the shape of the parachute, it experiences insignificant horizontal air resistance. If the kit descends with a constant vertical acceleration of 5.82 m/s^2, how far away from the survivor will it hit the waves?arrow_forwardThe Sultan Qaboos road is designed to operate at a speed of 100Kmph, but some people are racing above the limit and some people are trailing below 80Kmph, and cause multiple incidents on road. Design a radar frequency so that detect the both the speeds that is below 70kmph, and above 110kmph, provided the PRF is 500Hz only. The radar should not be blind between the above specified velocities and it should detect both the speed accurately.(Explain your assumptions of the radar and their specifications clearly, so that which radar frequency can be readily used on site)arrow_forward
- (a) A soccer player kicks a rock horizontally off a 44 m high cliff into a pool of water. If the player hears the sound of the splash 3.19 s later, what was the initial speed given to the rock (in m/s)? Assume the speed of sound in air is 343 m/s. m/s (b) What If? If the temperature near the cliff suddenly falls to 0°C, reducing the speed of sound to 331 m/s, what would the initial speed of the rock have to be (in m/s) for the soccer player to hear the sound of the splash 3.19 s after kicking the rock? m/sarrow_forwardA squirrel runs along an overhead telephone wire that stretches from the top of one pole to the next. It is initially at position x: = 2.01 m, as measured from the center of the wire segment. It then undergoes a displacement of Ax = -6.// m. What is the ' sauirrel's final position xe?arrow_forwardPlease Asaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY