Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 27Q
To determine
(a)
The semi major axis of the ellipse
To determine
(b)
The duration that will be taken in such a one-way trip to Mars.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
one trajectory that can be used to send spacecraft from earth to mars is an elliptical orbit that has the sun at one focus, its perihelion at earth, and it's aphelion at mars. the spacecraft is launched from earth and coasts along this ellipse until it reaches mars, when a rocket is fired to either put the spacecraft into orbit around mars or cause it to land on mars. (a) find the semimajor axis of the ellipse (in au). (hint: draw a picture showing the sun and the orbits of earth, mars, and the spacecraft. treat the orbits of earth and mars as circles.) [enter your answer in units of au]
On the evening of an autumnal equinox day Siddhant noticed that Mars was
exactly along the north-south meridian in his sky at the exact moment when the sun was
setting. In other words, the Sun and Mars subtended an angle of exactly 90° as measured
from the Earth. If the orbital radius of Mars is 1.52 au, What will be the approximate rise
time of the mars on the next autumnal equinox day?
If the satellite was placed in an orbit three times farther away, about how long would it take to orbit the Earth once? Answer in days, rounding to one significant figure.days
Mars rotates on its axis once every 1.02 days (almost the same as Earth does).
(a) Find the distance from Mars at which a satellite would remain in one spot over the Martian surface. (Use 6.42 1023 kg for the mass of Mars.)m(b) Find the speed of the satellite.m/s
Chapter 4 Solutions
Universe: Stars And Galaxies
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - Prob. 23QCh. 4 - Prob. 24QCh. 4 - Prob. 25QCh. 4 - Prob. 26QCh. 4 - Prob. 27QCh. 4 - Prob. 28QCh. 4 - Prob. 29QCh. 4 - Prob. 30QCh. 4 - Prob. 31QCh. 4 - Prob. 32QCh. 4 - Prob. 33QCh. 4 - Prob. 34QCh. 4 - Prob. 35QCh. 4 - Prob. 36QCh. 4 - Prob. 37QCh. 4 - Prob. 38QCh. 4 - Prob. 39QCh. 4 - Prob. 40QCh. 4 - Prob. 41QCh. 4 - Prob. 42QCh. 4 - Prob. 43QCh. 4 - Prob. 44QCh. 4 - Prob. 45QCh. 4 - Prob. 46QCh. 4 - Prob. 47QCh. 4 - Prob. 48QCh. 4 - Prob. 49QCh. 4 - Prob. 50QCh. 4 - Prob. 51QCh. 4 - Prob. 52QCh. 4 - Prob. 53QCh. 4 - Prob. 54QCh. 4 - Prob. 55QCh. 4 - Prob. 56QCh. 4 - Prob. 57QCh. 4 - Prob. 58Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that for eccentricity equal to one in Equation 13.10 for conic sections, the path is a parabola. Do this by substituting Cartersian coordinates, x and y, for the polar coordinates, r and , and showing that it has the general form for a parabola, x=ay2+by+c .arrow_forwardIf the major axis of an ellipse is 16 cm, what is the semimajor axis? If the eccentricity is 0.8, would this ellipse be best described as mostly circular or very elongated?arrow_forwardHow long does it take for one retrograde cycle of Mars as viewed from Earth, and in which direction is the retrograde motion? What fraction of Marss orbit around the Sun is the duration of retrograde motion as viewed from Earth?arrow_forward
- The orbital period of the Earth and Mars are Pg = 365.26 d and P respectively. Assuming circular orbits, the synodic period P, for two planets to be at the same angular position from the Sun can be found using the equation 1 = 686.97 d, %3D Pe Pe a) The last opposition of Mars occurred on 13 Oct 2020. Using the information above, calculate the interval between two consecutive Martian oppositions, and estimate the date of its next opposition. b) It is said that Mars at oppositions near its perihelion occur roughly once every 15 years, with the last event occurring on 27 Jul 2018. Using the synodie period derived, find a more accurate interval, and estimate the date for the next time this event occurs. c) The actual dates for the next Martian opposition and opposition at perihelion are 8 Dec 2022 and 15 Sep 2035, respectively. State two reasons why your estimations may have differed from these dates. In stage 10 of the evolution of a Sun-like star, helium fusion occurs. Write down the…arrow_forwardConsider an imaginary planet in our solar system at an average distance of25 AU from the Sun.(a) Calculate the orbital period of this planet. (b) This fictional planet has an orbital eccentricity of e = 0.4, calculatethe planet’s distance to the Sun at aphelion and perihelion. (c) Another imaginary planet in our solar system has a perihelion distanceof 12 AU from the Sun and an aphelion distance of 68 AU. Is theeccentricity of this new planet greater or less than the planet in theprevious question?arrow_forwardConsider the Earth's orbit around the Sun to be circular with radius R = 9.30 x 107 mi and it takes 365 days to complete one revolution. What is the distance Earth traveled for one revolution (circumference of a circle is 2??2πR )?arrow_forward
- Needs Complete typed solution with 100 % accuracy.arrow_forwardThe semimajor axis of Mars orbit is about 1.52 astronomical units (au), where an au is the Earth's average distance from the Sun, meaning the semimajor axis of Earth's orbit is 1 au. To go from Earth to Mars and use the least energy from rocket fuel, the orbit has a semimajor axis of 1.26 au and an eccentricity of about 0.21. Starting at Earth's orbit, to follow this path we give the spacecraft an orbital velocity of 40 km/s. Which of the following describes this best? It arrives at Mars orbit at the same moment that Mars is there, and must speed up to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. It arrives at Mars orbit at the same moment that Mars is there, and must slow down to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. It flys past Mars on its trajectory unless it is braked by accelerating toward the Sun. It which leaves Earth when…arrow_forwardThe semimajor axis of Mars orbit is about 1.52 astronomical units (au), where an au is the Earth's average distance from the Sun, meaning the semimajor axis of Earth's orbit is 1 au. To go from Earth to Mars and use the least energy from rocket fuel, the orbit has a semimajor axis of 1.26 au and an eccentricity of about 0.21. Starting at Earth's orbit, to follow this path we give the spacecraft an orbital velocity of 40 km/s. Which of the following describes this best? a. It arrives at Mars orbit at the same moment that Mars is there, and must speed up to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. b. It arrives at Mars orbit at the same moment that Mars is there, and must slow down to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. c. It flys past Mars on its trajectory unless it is braked by accelerating toward the Sun. It which leaves Earth when Mars is nearly…arrow_forward
- Using canonical units, What is the circular velocity of a satellite orbiting the earth at a radius of 1.50? (Answer: 0.816). What is the radius and altitude of a satellite orbiting the earth with a period of 10.0? (Answer: radius = 1.363, altitude = 0.363)arrow_forwardSuppose you are told that a satellite orbiting the Earth has a orbital period of 0.95 hours. Part (a) Using the orbital characteristics of the Moon (RM = 3.84 × 105km and TM = 0.0748 y), use Kepler's laws to calculate the orbital radius for the satellite, in kilometers.arrow_forwardWhat is the radial acceleration (m/s) of mercury if orbital period is 88 days and orbit radius is 5.79x10^7arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY