Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 16Q
To determine
The rule comes about for superior planet that the greater the average distance from the planet to the sun, the more frequently that planet will be at opposition.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I. Directions: Complete the given table by finding the ratio of the planet's time of revolution to its radius.
Average
Radius of
Orbit
Times of
Planet
R3
T2
T?/R3
Revolution
Mercury
5.7869 x 1010
7.605 x 106
Venus
1.081 x 1011
1.941 x 107
Earth
1.496 x 1011
3.156 x 107
1. What pattern do you observe in the last column of data? Which law of Kepler's does this seem to support?
II. Solve the given problems. Write your solution on the space provided before each number.
1. You wish to put a 1000-kg satellite into a circular orbit 300 km above the earth's surface. Find the
following:
a) Speed
b) Period
c) Radial Acceleration
Given:
Unknown:
Formula:
Solution:
Answer:
Given:
Unknown:
Formula:
Solution:
Answer:
Given:
Unknown:
Formula:
Solution:
Answer:
What would be the angular diameter (in arc seconds) of a planet with diameter 8.5 x 105 km and orbital distance from it's star of 175 x 108 km as seen from a planet with. orbital distance from the same star of 70 x 107 km as seen from their closest approach?
Part 1 of 3
The circular velocity equation can be used to determine the orbital velocity of a ring particle.
GM
V =
Calculate the orbital velocity of a ring particle that orbits 1.25 x 105 km from the center of Jupiter.
GM
V =
km/s
Chapter 4 Solutions
Universe: Stars And Galaxies
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - Prob. 23QCh. 4 - Prob. 24QCh. 4 - Prob. 25QCh. 4 - Prob. 26QCh. 4 - Prob. 27QCh. 4 - Prob. 28QCh. 4 - Prob. 29QCh. 4 - Prob. 30QCh. 4 - Prob. 31QCh. 4 - Prob. 32QCh. 4 - Prob. 33QCh. 4 - Prob. 34QCh. 4 - Prob. 35QCh. 4 - Prob. 36QCh. 4 - Prob. 37QCh. 4 - Prob. 38QCh. 4 - Prob. 39QCh. 4 - Prob. 40QCh. 4 - Prob. 41QCh. 4 - Prob. 42QCh. 4 - Prob. 43QCh. 4 - Prob. 44QCh. 4 - Prob. 45QCh. 4 - Prob. 46QCh. 4 - Prob. 47QCh. 4 - Prob. 48QCh. 4 - Prob. 49QCh. 4 - Prob. 50QCh. 4 - Prob. 51QCh. 4 - Prob. 52QCh. 4 - Prob. 53QCh. 4 - Prob. 54QCh. 4 - Prob. 55QCh. 4 - Prob. 56QCh. 4 - Prob. 57QCh. 4 - Prob. 58Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Based Figure 4-13c, do planets with larger a take longer, shorter, or the same time to orbit the Sun?arrow_forwardIf you lived on Mars, which planets would describe retrograde loops? Which would never be visible as crescent phases?arrow_forwardOne planet is three times farther from the Sun than another. Will the farther planet take more, less, or the same amount of time to orbit the Sun? Will the closer planet orbit slower, faster, or the same speed? How much longer will the farther planet take to orbit than the closer planet? If the closer planet is located at 10 AU, how far is the farther planet, and what are the two planet's names?arrow_forward
- During a retrograde loop of Mars, would you expect Mars to be brighter than usual in the sky, about average in brightness, or fainter than usual in the sky? Explain.arrow_forwardLook at Appendix F and Appendix G and indicate the moon with a diameter that is the largest fraction of the diameter of the planet or dwarf planet it orbits.arrow_forwardAgain using Appendix F, which planets might you expect to have extreme seasons? Whyarrow_forward
- The chart shows the length of time for each planet, in Earth days, to make one complete revolution around the Sun. Orbital Period of Planets iY the Solar System Orbital Period (Earth days) 88 225 365 687 4333 10 759 30 685 60 189 Planet Mercury Venus Earth Mars Jupiter Satum Uranus Neptune Source: NASA Use the data table above to compare the length of a year on Mars and Neptune. (HS-ESS1-4) a. One year on Neptune is almost 100 times longer than a year on Mars. b. One year on these two planets is nearly equal. c. One year on Mars is almost 100 times longer than a year on Neptune. d. One year these two planets is roughly equal to a year on Earth. Use the data table above to determine which of the following statements is TRUE. (HS-ESS1-4) a. There is no relationship between a planet's distance from the Sun and its length of year. b. The closer a planet is to the Sun, the longer the planet's year. c. One year on all planets is about 365 days long. d. The farther away a planet is from the…arrow_forwardConsider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06arrow_forwardAn asteroid is observed to be on a superior orbit with a synodic period of 466.6 days. What are the sidereal orbital period and semi-major axis of this asteroid? Choose the option below that most closely matches your answers. Select one: O a. Sidereal period = 1683 days and %3D semi-major = 2.7 AU O b. Sidereal period = 1683 days and semi-major axis = 4.8 AU O c. Sidereal period = 865 days and semi- major axis = 1.8 AU O d. Sidereal period = 426 day and semi- %3D major axis = 2.7 AU O e. Sidereal period = 1727 days and е. semi-major axis = 0.8 AUarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY