Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence. d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 x = − b ± b 2 − 4 a c 2 a x = − b 2 a arbitrary binomial coefficient conjecture counterexample deductive reasoning equivalent expanded form exponential decay exponential function exponential growth f(x) factored form factoring factors function growth factor hypotenuse inductive reasoning inverse variation isosceles margin of error parabola parameters perfect squares polynomial prime polynomial profit quadratic function revenue right triangle standard form symmetry terms trinomial vertex zero In economics, the word _______________ refers to the amount of money that a business takes in as a result of selling a product or service.
Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence. d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 x = − b ± b 2 − 4 a c 2 a x = − b 2 a arbitrary binomial coefficient conjecture counterexample deductive reasoning equivalent expanded form exponential decay exponential function exponential growth f(x) factored form factoring factors function growth factor hypotenuse inductive reasoning inverse variation isosceles margin of error parabola parameters perfect squares polynomial prime polynomial profit quadratic function revenue right triangle standard form symmetry terms trinomial vertex zero In economics, the word _______________ refers to the amount of money that a business takes in as a result of selling a product or service.
Solution Summary: The author explains that in economics, the word revenue refers to the amount of money that a business takes in.
Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence.
d
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
x
=
−
b
±
b
2
−
4
a
c
2
a
x
=
−
b
2
a
arbitrary
binomial
coefficient
conjecture
counterexample
deductive reasoning
equivalent
expanded form
exponential decay
exponential function
exponential growth
f(x)
factored form
factoring
factors
function
growth factor
hypotenuse
inductive reasoning
inverse variation
isosceles
margin of error
parabola
parameters
perfect squares
polynomial
prime polynomial
profit
quadratic function
revenue
right triangle
standard form
symmetry
terms
trinomial
vertex
zero
In economics, the word _______________ refers to the amount of money that a business takes in as a result of selling a product or service.
3. (i) Consider the following R code:
wilcox.test(UK Supermarkets $Salary ~ UKSupermarkets $Supermarket)
(a) Which test is being used in this code?
(b) What is the name of the dataset under consideration?
How would be adapt this code if we had ties? What other command
can be used which deals with ties?
(ii) Consider the following R code:
install packages("nortest")
library(nortest)
lillie.test (Differences)
(a) Assuming the appropriate dataset has been imported and attached,
what is wrong with this code?
(b) If this code were to be corrected, what would be determined by run-
ning it?
[3 Marks]
1. (i) Give the definition of a metric on a set X.
[5 Marks]
(ii) Let X = {a, b, c} and let a function d : XxX → [0, ∞) be defined
as d(a, a) = d(b,b) = d(c, c) 0, d(a, c) = d(c, a) 1, d(a, b) = d(b, a) = 4,
d(b, c) = d(c,b) = 2. Decide whether d is a metric on X. Justify your answer.
=
(iii) Consider a metric space (R, d.), where
=
[10 Marks]
0
if x = y,
d* (x, y)
5
if xy.
In the metric space (R, d*), describe:
(a) open ball B2(0) of radius 2 centred at 0;
(b) closed ball B5(0) of radius 5 centred at 0;
(c) sphere S10 (0) of radius 10 centred at 0.
[5 Marks]
[5 Marks]
[5 Marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY