Horizons: Exploring the Universe - With MindTap
14th Edition
ISBN: 9781337578080
Author: Seeds
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 1RQ
Why did Greek astronomers conclude that the heavens were made up of perfect crystalline spheres moving at constant speeds?
Expert Solution & Answer
To determine
The reason for Heaven's were mode of perfect crystalline sphere moving at constant speed.
Answer to Problem 1RQ
Greek Astronomers concludes that heavens are made of perfect sphere because heavenly bodies move in circular motion. The only perfect geometrical shape is sphere.
Explanation of Solution
- Heaven is a huge dome under which Sun, moon, stars, planets are situated. As sphere is a perfect geometrical shape, it carries a point on its surface around a circle anywhere and circular motion is the only motion which is uniform.
- Greek astronomers were highly interested in numbers and mathematics. They wanted to calculate heavenly motion of the object. They concluded that all the objects in heaven are attached to giant Sphere which rotates around Earth at uniform motion.
- Sun, moon, planets do not revolve around earth and don’t set and raise like sun, they just go laterally like a cap which turns half along head and back.
Conclusion:
Unlike set and rise of stars, heaven is perfect sphere of Crystal which moves uniformly at constant speed. Stars are attached to a rigid frame called heaven.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
a cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?
Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were:
222.22 800.00
61.11 641.67
0.00 588.89
11.11 588.89
8.33 588.89
11.11 588.89
5.56 586.11
2.78 583.33
Give in the answer window the calculated repeated experiment variance in m/s2.
Chapter 4 Solutions
Horizons: Exploring the Universe - With MindTap
Ch. 4 - Why did Greek astronomers conclude that the...Ch. 4 - Why did classical astronomers conclude that Earth...Ch. 4 - How did the Ptolemaic model explain retrograde...Ch. 4 - In what ways were the models of Ptolemy and...Ch. 4 - Why did the Copernican hypothesis win gradual...Ch. 4 - Why is it difficult for scientists to replace an...Ch. 4 - Why did Tycho Brahe expect the new star of 1572 to...Ch. 4 - How was Tycho’s model of the Universe similar to...Ch. 4 - Explain how Kapler’s lows contradict uniform...Ch. 4 - What is the difference between a hypothesis ,...
Ch. 4 - How did The Alfonsine Tables, The Prutenic Tables,...Ch. 4 - Review Galileo’s telescopic discoveries and...Ch. 4 - Galileo was condemned by the Inquisition, but...Ch. 4 - How do Newton’s laws lead you to conclude that...Ch. 4 - Explain why you might describe the orbital motion...Ch. 4 - Prob. 16RQCh. 4 - How Do We know? How would you respond to someone...Ch. 4 - Prob. 18RQCh. 4 - How Do We Know? Why is it important that a...Ch. 4 - Science historian Thomas Kuhn has said that De...Ch. 4 - Many historians suspect that Galileo offended Pope...Ch. 4 - Prob. 3DQCh. 4 - If you lived on Mars, which planets would describe...Ch. 4 - Galileo’s telescope showed him that Venus has a...Ch. 4 - Galileo’s telescopes were not of high quality by...Ch. 4 - If a planet had an average distance from the Sun...Ch. 4 - If a space probe were sent into an orbit around...Ch. 4 - Neptune orbits the Sun with a period of 164.8...Ch. 4 - Venus’s average distance from the Sun is 0.72 AU...Ch. 4 - The circular velocity of Earth around the Sun is...Ch. 4 - What is the orbital velocity of an Earth satellite...Ch. 4 - Prob. 1LTLCh. 4 - Prob. 2LTLCh. 4 - Why is it a little bit misleading to say that this...Ch. 4 - Prob. 4LTLCh. 4 - Mercury’s orbit hardly deviates from a circle, but...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY