
Fundamentals Of Construction Estimating
4th Edition
ISBN: 9781337399395
Author: Pratt, David J.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 1RQ
To determine
The difference in measuring the excavation and the measurement of other trade work.
Expert Solution & Answer

Explanation of Solution
Measurement of the excavation work is different from many of the trade works because of the following reasons:
- The bid drawings do not offer the proper specifications of the site work operations. The drawings only provide the details regarding the new construction of the project and not the current status of the site.
- The most important point is that the dimensions of the foundations are well defined in the drawing but absolutely nothing is disclosed regarding the dimensions of the excavation work.
- It is advised in the "Instruction to Bidders" that the contractors should be knowledgeable about the present situation of the site.
- The estimator must make an assessment report of the excavation, from data in specifications and drawings; from site visit information, etc. The estimator is advised to make a checklist of the items to be considered on a site visit as the site conditions would influence the pricing of many things in the estimate.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The figures below shows the framing plan and section of a reinforced concrete floor system.
Floor beams are shown as dotted lines. The weight of the ceiling and floor finishing is 6 psf,
that of the mechanical and electrical systems is 7 psf, and the weight of the partitions is 180
psf. The floor live load is 105 psf. The 7 in. thick slab exterior bay (S-1) is reinforced with #5
rebars @ 10 in. o.c. as the main positive reinforcement at the mid span, and #4 @ 109 in. for
the shrinkage and temperature reinforcement. The panel is simply supported on the exterior
edge and monolithic with the beam at the interior edge. Check the adequacy of the slab. Use
the ACI moment coefficients. fc’ = 6,000 psi and fy = 60,000 psi. The slab is in an interior
location.
Hint:
• Estimate total dead load. Find factored maximum positive bending moment in the end
span.
• Find design positive moment capacity.
• Compare and determine adequacy, including safety and economy.
C
D
At a point on the surface of a generator shaft the stresses are σx = -55MPa, σy =
25MPa and Txy = -20MPa as shown in Figure Q1.
(a) Using either analytical method or Mohr's circle determine the following:
Stresses acting on an element inclined at an angle 0 = 35°,
i.
ii.
iii.
The maximum shear stress
The principal stresses and
B.
25 MPa
A
55 MPa
20 MPa
Figure 1:Material stress state
(b) Consider that the Young's modulus for the material, E = 200kPa and
Poisson's ratio, v = 0.25.
i.
ii.
determine associate strains for the material with the stress as shown in
Figure 1
determine associate strains for the material with the stress at element
oriented at 35° (question 1a(i))
For an reinforced concrete two-way slab shown in figure under the load (P). (the slab
continuous over all edges - all sides are fixed), Determine (By using yield line theory):
A- Draw the Yield line Pattern
B- Determine the moment m
C- Find The required flexural steel to resist the loads causing the slab to collapse if P = 200
KN, f=28 MPa, fy = 420 MPa d = 120 mm. Use 10 mm bars.
Draw the yield line and
(Qmin = 0.002)
2m
solve
PO
6 m
3 m
-8 m
Chapter 4 Solutions
Fundamentals Of Construction Estimating
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the internal torques for segments AB, BC, and CD (in N-m) by drawing the internal torque diagram, the maximum torsional shear on the shaft in MPa, and the relative rotation of section A with respect to section D in degrees.arrow_forwardFor an reinforced concrete two-way slab shown in figure under the load (P). (the slab continuous over all edges - all sides are fixed), Solve by using equilibrium method A- Draw the Yield line Pattern B- Determine the moment m C- Find The required flexural steel to resist the loads causing the slab to collapse if P = 200 kN, f=28 MPa, fy = 420 MPa d = 120 mm. Use 10 mm bars. (Pmin = 0.002) 2 m 6 m -8 m 3 marrow_forwardA double-T simply supported concrete beam its cross section is shown in Figure, is prestressed with 2 tendons each 400 mm². Determine the allowable service load. Use span 12 m, fse = 1300 MPa, fe = 40 MPa, y = 25 kN/m³. = 1200 mm >09 *100* As = 400 +100+ As = 400 400 1400+arrow_forward
- A double-T simply supported concrete beam its cross section is shown in Figure, is prestressed with 2 tendons each 400 mm². Determine the allowable service load. Use span 12 m, fse = 1300 MPa, fc = 40 MPa, y = 25 kN/m³. = 1200 mm >09< *100* As = 400 +100+ As = 400 400 1400+arrow_forwardA prestressed simply supported 15 m span beam with rectangular box section is post-tensioned by straight high tensile steel wires as shown in Figure. The prestressing wires are placed at the center line of the flanges and initially stressed to 850 N/mm². The beam is required to carry a uniformly distributed superimposed load of 4.5 kN/m in addition to its weight. If the concrete stresses are not to exceed 17 MPa in compression and 1 MPa in tension at service stage, calculate the range of the total prestressing wires area required. Ignore prestressing force losses in your answer. (Ye kN/m³). = 24 2As 400 As 80 80; 750arrow_forwardA simply supported rectangular prestressed concrete beam, of span 13 m and its cross section as shown in figure, is carrying a live load equals to 30 kN/m in addition to its weight, compute the following stresses and compare it with ACI allowable stress: a) Bottom fiber stress at support in initial stage. b) Top fiber stress at mid span in final stage. Use y = 24 kN/m³, As = 600 mm², initial stress of the prestressed steel = 1200 MPa, total losses is 20%, fci = 22 MPa, and fo' = 28 MPa 800 mm 3 As 400 mm As 340 mm 340 mmarrow_forward
- A study of the properties of metal plate-connected trusses used for roof support yielded the following observations on axial stiffness index (kips/in.) for plate lengths 4, 6, 8, 10, and 12 in: 4: 320.2 409.5 311.0 326.5 316.8 349.8 309.7 6: 401.1 347.2 361.0 404.5 331.0 348.9 381.7 8: 395.4 366.2 351.0 357.1 409.9 367.3 382.0 10: 356.7 452.9 461.4 433.1 410.6 384.2 362.6 12: 415.4 441.8 419.9 410.7 473.4 441.2 465.8 USE SALT Does variation in plate length have any effect on true average axial stiffness? State the relevant hypotheses using analysis of variance. O Ho M1 M2 M3 = μ4=μ5 Ha all five μ's are unequal Ho: M1 M2 M3 #44 #μ5 Ha all five μ's are equal Ho: M₁ μ2 43 #44 #μ5 H₁: at least two μ,'s are equal O Ho M1 M2 M3 = μ4=μ5 Ha at least two μ's are unequal Test the relevant hypotheses using analysis of variance with a = 0.01. Display your results in an ANOVA table. (Round your answers to two decimal places.) Degrees of Sum of Mean Source Squares Squares f freedom Treatments Error…arrow_forward1-Define a cartesion system 2 identify the structure's supports and the type of structure (2D) or 3D 3-If the structure has more than one element dismember the structure and draw free body diagram(show all actions and reactions) on each element independently 4- Determine the type of suports 5- show the unkown supports reactions with any assumed direction but you cannot change the assumed force direction once you dicede 6-In a common joint, you can dicide on the force direction in one element, however, in the other one you need to follow the Newton'ns 3rd law and shoe the opposite direction 7- if you have multiple actions forces in the system, find force components for each foce independently use Sin/Cos/Tan functions to find forces components in two perpendicular directions 8- Add forces in each direction since they are paralled forces Rx=fx Ry=fy Rz= fyarrow_forwardPhysical properties of six flame-retardant fabric samples were investigated in an article. Use the accompanying data and a 0.05 significance level to determine whether a linear relationship exists between stiffness x (mg-cm) and thickness y (mm). x y 8.08 24.33 12.39 6.99 23.97 35.64 0.25 0.68 0.30 0.28 0.82 0.57 State the appropriate null and alternative hypotheses. ○ Ho: p = 0 H₂: pO ○ Hop = 0 Hap #0 Compute the value of the sample correlation coefficient, r. Round your answer to four decimal places. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to three decimal places.) P-value = State the conclusion in the problem context. O Fail to reject Ho. The data indicates that the population correlation coefficient differs from 0. Fail to reject Ho. The data does not indicate that the population correlation coefficient differs from 0. Reject Ho. The data indicates that the population correlation coefficient differs…arrow_forward
- 1-Define a cartesion system 2 identify the structure's supports and the type of structure (2D) or 3D 3-If the structure has more than one element dismember the structure and draw free body diagram(show all actions and reactions) on each element independently 4- Determine the type of suports 5- show the unkown supports reactions with any assumed direction but you cannot change the assumed force direction once you dicede 6-In a common joint, you can dicide on the force direction in one element, however, in the other one you need to follow the Newton'ns 3rd law and shoe the opposite direction 7- if you have multiple actions forces in the system, find force components for each foce independently use Sin/Cos/Tan functions to find forces components in two perpendicular directions 8- Add forces in each direction since they are paralled forces Rx=fx Ry=fy Rz= fyarrow_forward- - A study reports data on the effects of the drug tamoxifen on change in the level of cortisol-binding globulin (CBG) of patients during treatment. With age = x and ACBG = y, summary values are n = 26, Ex, = 1613, Σ(x, x)² = 3756.96, Ey, = 281.9, (y, v)² = 465.34, and Exy, = 16,709. (a) Compute a 90% CI for the true correlation coefficient p. (Round your answers to four decimal places.) (b) Test Ho: p =-0.5 versus Ha: p< -0.5 at level 0.05. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to four decimal places.) P-value = State the conclusion in the problem context. Fail to reject Ho. There is evidence that p < -0.5. Reject Ho. There is no evidence that p < -0.5. Reject Ho. There is evidence that p < -0.5. Fail to reject Ho. There is no evidence that p < -0.5. (c) In a regression analysis of y on x, what proportion of variation in change of cortisol-binding globulin level could be explained by variation in…arrow_forwardThe authors of a paper presented a correlation analysis to investigate the relationship between maximal lactate level x and muscular endurance y. The accompanying data was read from a plot in the paper. 1,410 1,465 1,470 1,515 2,190 x 390 740 760 810 860 1,035 1,190 1,240 1,290 у 3.90 4.10 4.80 5.10 3.90 3.60 6.20 6.78 7.65 4.85 7.90 4.35 6.70 9.00 S = 2,619,058.929, S = 39.0467, S xx yy 7,588.061. A scatter plot shows a linear pattern. ху (a) Test to see whether there is a positive correlation between maximal lactate level and muscular endurance in the population from which this data was selected. (Use α = 0.05.) State the appropriate null and alternative hypotheses. O Ho: P = 0 H₂: p 0 Compute the value of the sample correlation coefficient, r. (Round your answer to four decimal places.) Calculate the test statistic and determine the P-value. (Round your test statistic to one decimal place and your P-value to three decimal places.) t P-value = State the conclusion in the problem…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningArchitectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage Learning

Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,

Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning

Residential Construction Academy: House Wiring (M...
Civil Engineering
ISBN:9781285852225
Author:Gregory W Fletcher
Publisher:Cengage Learning

Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning

Architectural Drafting and Design (MindTap Course...
Civil Engineering
ISBN:9781285165738
Author:Alan Jefferis, David A. Madsen, David P. Madsen
Publisher:Cengage Learning