Mechanics of Materials
Mechanics of Materials
11th Edition
ISBN: 9780137605460
Author: Russell C. Hibbeler
Publisher: Pearson Education (US)
bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 1RP

The assembly consists of two A992 steel bolts AB and EF and an 6061-T6 aluminum rod CD. When the temperature is at 30° C, the gap between the rod and rigid member AE is 0.1 mm Determine the normal stress developed in the bolts and the rod if the temperature rises to 130° C.

Assume BF is also rigid.

Chapter 4, Problem 1RP, The assembly consists of two A992 steel bolts AB and EF and an 6061-T6 aluminum rod CD. When the

R4–1/2

Expert Solution & Answer
Check Mark
To determine

The normal stress developed in the bolts and rod.

Answer to Problem 1RP

The normal stress developed in the bolts and rod are 33.5MPa_ and 16.8MPa_

Explanation of Solution

Given information:

The two bolts AB and EF are made of A992 steel.

The rod CD is made of 6061-T6 aluminum.

The Young’s modulus of the steel is (Est) 200×103N/mm2

The Young’s modulus of the aluminum (Eal) is 68.9×103N/mm2

The coefficient of thermal expansion of the steel (αst) is 12×106m/m°C

The coefficient of thermal expansion of the aluminum (αal) is 24×106m/m°C

The initial temperature (T1) is 30°C

The finial temperature (T2) is 130°C

The gap between the rod and rigid member AE is 0.1mm

The diameter of the bolts AB and EF (db) is 25mm

The diameter of the rod CD (dr) is 50mm

The length of the bolts AB and EF (Lb)  is 400mm

The length of the rod CD (Lr) is 300mm

Calculation:

Calculate the area of the bolts AB and EF (Ab) using the formula:

Ab=π4db2 (1)

Substitute 25mm for db in Equation (1).

Ab=π4×252=490.874mm2

Calculate the area of the rod CD (Ar) using the formula:

Ar=π4dr2 (2)

Substitute 50mm for dr in Equation (2).

Ar=π4×502=1,963.495mm2

Calculate the difference of temperature (ΔT) using the formula:

ΔT=T2T1 (3)

Substitute 30°C for T1 and 130°C for T2 in Equation (3).

ΔT=13030=100°C

Show the free body diagram of the rigid cap as in Figure 1.

Mechanics of Materials, Chapter 4, Problem 1RP , additional homework tip  1

Refer Figure 1.

Calculate the vertical forces by applying the equation of equilibrium:

Sum of vertical forces is equal to 0.

Fy=0Fb+FrFb=0Fr2Fb=0Fr=2Fb (4)

Here, Fb is force at the bolts AB and EF and Fr is force at the rod CD.

Show the initial and final position of the assembly as in Figure 2.

Mechanics of Materials, Chapter 4, Problem 1RP , additional homework tip  2

Refer Figure 2.

Here (δT)r is deformation at rod due to temperature, (δT)b is deformation at bolts due to temperature, (δF)r is deformation at rod due to force, and (δF)b is deformation at bolts due to force.

The deformation is as follows:

(δT)r(δF)r0.1=(δT)b+(δF)bαalΔTLrFrLrArEal0.1=αstΔTLb+FbLbAbEst (5)

Substitute 24×106m/m°C for σal , 12×106m/m°C for αst , 100°C for ΔT , 300mm for Lr , 400mm for Lb , 1,963.495mm2 for Ar , 490.874mm2 for Ab , 68.9×103N/mm2 for Eal , and 200×103N/mm2 for Est in Equation (5).

[(24×106×100×300)Fr×3001,963.495×68.9×1030.1]=[(12×106×100×400)+Fb×400490.874×200×103]0.722.2175×106Fr0.1=0.48+4.0743×106Fb4.0743×106Fb+2.2175×106Fr=0.720.10.48

4.0743×106Fb+2.2175×106Fr=0.14Fb+0.5443Fr=34,361.73 (6)

Calculate the force at the bolts AB and EF (Fb)

Substitute 2Fb for Fr in Equation (6).

Fb+0.5443(2Fb)=34,361.732.0886Fb=34,361.73Fb=34,361.732.0886Fb=16,452N

Calculate the force at the rod CD (Fr)

Substitute 16,452N for Fb in Equation (4).

Fr=2(16,452)=32,904N

Calculate the normal stress developed in the bolts AB and EF (σb) using the formula:

σb=FbAb (7)

Substitute 16,452N for Fb and 490.874mm2 for Ab in Equation (7).

σb=16,452490.874=33.5N/mm2×1MPa1N/mm2=33.5MPa

Calculate the normal stress developed in the rod CD (σr) using the formula:

σr=FrAr (8)

Substitute 32,904N for Fb and 1,963.495mm2 for Ar in Equation (8).

σr=3,29041,963.495=16.8N/mm2×1MPa1N/mm2=16.8MPa

Hence, the normal stress developed in the bolts and rod are 33.5MPa_ and 16.8MPa_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
06:56
Students have asked these similar questions
If the rods are made from a square section with the dimension as shown. Calculate the load that will make point A move to the left by 6mm, E=228GPa. 2P- P A 80mm B 200mm 2P 0.9m 1.3m
3. 9. 10. The centrifugal tension in belts (a) increases power transmitted (b) decreases power transmitted (c) have no effect on the power transmitted (d) increases power transmitted upto a certain speed and then decreases When the belt is stationary, it is subjected to some tension, known as initial tension. The value of this tension is equal to the (a) tension in the tight side of the belt (b) tension in the slack side of the belt (c) sum of the tensions in the tight side and slack side of the belt (d) average tension of the tight side and slack side of the belt The relation between the pitch of the chain (p) and pitch circle diameter of the sprocket (d) is given by 60° (a) p=d sin (c) p=d sin (120° T where T Number of teeth on the sprocket. 90° (b) p=d sin T 180° (d) p=d sin T
OBJECTIVE TYPE QUESTIONS 1. The maximum fluctuation of energy is the 2. (a) sum of maximum and minimum energies (b) difference between the maximum and minimum energies (c) ratio of the maximum energy and minimum energy (d) ratio of the mean resisting torque to the work done per cycle In a turning moment diagram, the variations of energy above and below the mean resisting torque line is called (a) fluctuation of energy (b) maximum fluctuation of energy (c) coefficient of fluctuation of energy (d) none of the above Chapter 16: Turning Moment Diagrams and Flywheel 611 The ratio of the maximum fluctuation of speed to the mean speed is called 3. (a) fluctuation of speed (c) coefficient of fluctuation of speed 4. (b) maximum fluctuation of speed (a) none of these The ratio of the maximum fluctuation of energy to the.......... is called coefficient of fluctuation of energy. (a) minimum fluctuation of energy (b) work done per cycle The maximum fluctuation of energy in a flywheel is equal to 5.…

Chapter 4 Solutions

Mechanics of Materials

Ch. 4.2 - Prob. 8PCh. 4.2 - The post is made of Douglas fir and has a diameter...Ch. 4.2 - The post is made of Douglas fir and has a diameter...Ch. 4.2 - The coupling rod is subjected to a force of 5 kip....Ch. 4.2 - The pipe is stuck in the ground so that when it is...Ch. 4.2 - The assembly consists of three titanium...Ch. 4.2 - The assembly consists of two rigid bars that are...Ch. 4.2 - The truss consists of three members, each made...Ch. 4.2 - Solve Prob. 426 when the load P acts vertically...Ch. 4.2 - The ball is truncated at its ends and is used to...Ch. 4.5 - The column is constructed from high-strength...Ch. 4.5 - The column is constructed from high-strength...Ch. 4.5 - The A-36 steel pipe has a 6061-T6 aluminum core....Ch. 4.5 - The 304 stainless steel post A has a diameter of...Ch. 4.5 - The 304 stainless steel post A is surrounded by a...Ch. 4.5 - The 10-mm-diameter steel bolt is surrounded by a...Ch. 4.5 - The rigid beam is supported by the three suspender...Ch. 4.5 - The bolt AB has a diameter of 20 mm and passes...Ch. 4.5 - If the gap between C and the rigid wall at D is...Ch. 4.5 - The support consists of a solid red brass C83400...Ch. 4.5 - Prob. 55PCh. 4.5 - The three A-36 steel wires each have a diameter of...Ch. 4.5 - The A-36 steel wires AB and AD each have a...Ch. 4.5 - The assembly consists of two posts AB and CD each...Ch. 4.5 - The assembly consists of two posts AB and CD each...Ch. 4.5 - The assembly consists of two posts AB and CD each...Ch. 4.5 - The wheel is subjected to a force of 18 kN from...Ch. 4.6 - The C83400-red-brass rod AB and 2014-T6- aluminum...Ch. 4.6 - The assembly has the diameters and material...Ch. 4.6 - Prob. 72PCh. 4.6 - Prob. 77PCh. 4.6 - Prob. 80PCh. 4.6 - The 50-mm-diameter cylinder is made from Am...Ch. 4.6 - The 50-mm-diameter cylinder is made from Am...Ch. 4.6 - The metal strap has a thickness t and width w and...Ch. 4.9 - Determine the maximum normal stress developed in...Ch. 4.9 - If the allowable normal stress for the bar is...Ch. 4.9 - Prob. 89PCh. 4.9 - The A-36 steel plate has a thickness of 12 mm. If...Ch. 4.9 - Determine the maximum axial force P that can be...Ch. 4.9 - Determine the maximum normal stress developed in...Ch. 4.9 - The member is to be made from a steel plate that...Ch. 4.9 - Prob. 96PCh. 4.9 - The bar has a cross-sectional area of 0.5 in2 and...Ch. 4.9 - The distributed loading is applied to the rigid...Ch. 4.9 - The distributed loading is applied to the rigid...Ch. 4.9 - The rigid lever arm is supported by two A-36 steel...Ch. 4.9 - The rigid lever arm is supported by two A-36 steel...Ch. 4.9 - The wire BC has a diameter of 0.125 in. and the...Ch. 4.9 - Prob. 104PCh. 4.9 - Prob. 106PCh. 4 - The assembly consists of two A992 steel bolts AB...Ch. 4 - The assembly shown consists of two A992 steel...Ch. 4 - The rods each have the same 25-mm diameter and...Ch. 4 - Two A992 steel pipes, each having a...Ch. 4 - The force P is applied to the bar, which is made...Ch. 4 - The 2014-T6 aluminum rod has a diameter of 0.5 in....Ch. 4 - The 2014-T6 aluminum rod has a diameter of 0.5 in....Ch. 4 - The rigid link is supported by a pin at A and two...Ch. 4 - The joint is made from three A992 steel plates...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
What is an infinite loop? Write the code for an infinite loop.

Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)

Write a statement that opens the file Customers.dat as a random access file for both reading and writing.

Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)

Why were computer programming languages invented?

Starting Out with C++ from Control Structures to Objects (9th Edition)

The do-while loop is this type of loop. a. pretest b. posttest c. prefix d. postfix

Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY