Principles Of Operations Management
Principles Of Operations Management
11th Edition
ISBN: 9780135173930
Author: RENDER, Barry, HEIZER, Jay, Munson, Chuck
Publisher: Pearson,
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 17P
Summary Introduction

To determine: Find the forecast of sales using exponential smoothing with smoothing constant 0.6 and 0.9 and infer the effect of exponential smoothing on forecast. Using MAD, determine the accurate forecast of exponential smoothing with given smoothing constant 0.3, 0.6 and 0.9.

Introduction: A sequence of data points in successive order is known as time series. Time series forecasting is the prediction based on past events which are at a uniform time interval. Moving average method and trend projections are two of the time series methods which use weights to prioritize past data.

Expert Solution & Answer
Check Mark

Answer to Problem 17P

On Comparing MAD from exponential smoothing with smoothing constant 0.3, 0.6 and 0.9 (refer to equations (1), (2) and (3)), it can be inferred that the MAD of exponential smoothing with smoothing constant is most accurate because of least value of MAD.

Explanation of Solution

Forecast of sales using exponential smoothing with smoothing constant 0.6:

Given information:

Year Sales
1 450
2 495
3 518
4 563
5 584

Initial forecast for year 1=410Smoothingconstant=0.6

Formula to calculate the forecasted demand:

Ft=Ft-1+α(At-1-Ft-1)

Where,

Ft=newforecastFt-1=Previousperiod'sforecastα=smoothingconstantAt-1=PreviousperiodactualDemand

Smoothing constant=0.6
Year Sales Forecast Absolute error
1 450 410 40
2 495 434 61
3 518 470.6 47.4
4 563 499.04 63.96
5 584 537.416 46.584
6 565.3664
Total 258.944
MAD 51.7888

Excel worksheet:

Principles Of Operations Management, Chapter 4, Problem 17P , additional homework tip  1

Calculation of the forecast for year 2:

F2=F1+α(A1-F1)=410+0.6(450410)=434

To calculate the forecast for year 2, substitute the value of forecast of year 1, smoothing constant and the difference of actual and forecasted demand in the above formula. The result of the forecast for year 2 is 434.

Calculation of the forecast for year 3:

F3=F2+α(A2-F2)=434+0.6(495434)=470.6

To calculate the forecast for year 3, substitute the value of forecast of year 2, smoothing constant and the difference of actual and forecasted demand in the above formula. The result of the forecast for year 3 is 470.6.

Calculation of the forecast for year 4:

F4=F3+α(A3-F3)=470.60+0.6(518470.60)=499.04

To calculate the forecast for year 4, substitute the value of forecast of year 3, smoothing constant and the difference of actual and forecasted demand in the above formula. The result of the forecast for year 4 is 499.04.

Calculation of the forecast for year 5:

F5=F4+α(A4-F4)=499.04+0.6(563499.04)=537.416

To calculate the forecast for year 5, substitute the value of forecast of year 4, smoothing constant and the difference of actual and forecasted demand in the above formula. The result of the forecast for year 5 is 537.416.

Calculation of the forecast for year 6:

F6=F5+α(A5F5)=537.416+0.6(584537.416)=565.36

To calculate the forecast for year 5, substitute the value of forecast of year 5, smoothing constant and the difference of actual and forecasted demand in the above formula. The result of the forecast for year 6 is 565.36.

Calculation of MAD using exponential smoothing with smoothing constant α=0.6:

Formula to calculate the Mean Absolute Deviation:

MAD=|ActualForecast|n

Calculation of the absolute error for year 1:

Absoluteerror=|ActualForecast|=|450410|=|40|=40

The absolute error for year 1 is the modulus of the difference between 450 and 410, which corresponds to 40. Therefore, the absolute error for year 1 is 40.

Calculation of the absolute error for year 2:

Absoluteerror=|Actual-Forecast|=|495434|=|61|=61

The absolute error for year 2 is the modulus of the difference between 495 and 434, which is correspond to 61. Therefore, the absolute error for year 2 is 61.

Calculation of the absolute error for year 3:

Absoluteerror=|Actual-Forecast|=|518470.6|=|47.4|=47.4

The absolute error for year 3 is the modulus of the difference between 518and 470.6, which is correspond to 47.4. Therefore, the absolute error for year 3 is 47.4.

Calculation of the absolute error for year 4:

Absoluteerror=|Actual-Forecast|=|563499.04|=|63.96|=63.96

The absolute error for year 4 is the modulus of the difference between 563and499.04, which is correspond to 63.96. Therefore, the absolute error for year 4 is 63.96.

Calculation of the absolute error for year 5:

Absoluteerror=|Actual-Forecast|=|584537.416|=|46.584|=46.584

The absolute error for year 5 is the modulus of the difference between 584and537.416, which is correspond to 46.584. Therefore, the absolute error for year 5 is 46.584.

Calculation of the Mean Absolute Deviation using exponential smoothing with smoothing constant 0.6:

MAD=|Actual-Forecast|n=40+61+47.4+63.96+46.5845=258.9445=51.7888 (1)

Upon the substitution of summation value of the absolute error for 5 years, that is, 258.944 is divided by the number of years. That is, 5 yields MAD of 51.7888.

The forecast of sales using exponential smoothing with 0.6 as smoothing constant is 565.36 and MAD is 51.7888.

Forecast of sales using exponential smoothing with smoothing constant 0.9:

Given information:

Year Sales
1 450
2 495
3 518
4 563
5 584

Initial forecast for year 1=410Smoothingconstant=0.9

Formula to calculate the forecasted demand:

Ft=Ft-1+α(At-1Ft-1)

Where,

Ft=newforecastFt-1=Previousperiod'sforecastα=smoothingconstantAt-1=PreviousperiodactualDemand

Smoothing constant=0.9
Year Sales Forecast Absolute error
1 450 410 40
2 495 446 49
3 518 490.1 27.9
4 563 515.21 47.79
5 584 558.221 25.779
6 581.4221
Total 190.469
MAD 38.0938

Excel worksheet:

Principles Of Operations Management, Chapter 4, Problem 17P , additional homework tip  2

Calculation of the forecast for year 2:

F2=F1+α(A1-F1)=410+0.9(450410)=446

To calculate the forecast for year 2, substitute the value of forecast of year 1, smoothing constant and difference of actual and forecasted demand in the above formula. The result of the forecast for year 2 is 446.

Calculation of the forecast for year 3:

F3=F2+α(A2-F2)=446+0.9(495446)=490.1

To calculate the forecast for year 3, substitute the value of forecast of year 2, smoothing constant and difference of actual and forecasted demand in the above formula. The result of the forecast for year 3 is 490.1.

Calculation of the forecast for year 4:

F4=F3+α(A3-F3)=490.1+0.9(518490.1)=515.21

To calculate the forecast for year 4, substitute the value of forecast of year 3, smoothing constant and difference of actual and forecasted demand in the above formula. The result of the forecast for year 4 is 515.21.

Calculation of the forecast for year 5:

F5=F4+α(A4-F4)=515.21+0.9(563515.21)=558.221

To calculate the forecast for year 5, substitute the value of forecast of year 4, smoothing constant and difference of actual and forecasted demand in the above formula. The result of forecast for year 5 is 558.221.

Calculation of the forecast for year 6:

F6=F5+α(A5-F5)=558.221+0.9(584558.221)=581.42

To calculate the forecast for year 6, substitute the value of forecast of year 5, smoothing constant and difference of actual and forecasted demand in the above formula. The result of forecast for year 6 is 581.42.

Calculation of MAD using exponential smoothing with smoothing constant α=0.9:

Formula to calculate the Mean Absolute Deviation:

MAD=|ActualForecast|n

Calculation of the absolute error for year 1:

Absoluteerror=|Actual-Forecast|=|450410|=|40|=40

The absolute error for year 1 is the modulus of the difference between 450 and 410, which corresponds to 40. Therefore, the absolute error for year 1 is 40.

Calculation of the absolute error for year 2:

Absoluteerror=|Actual-Forecast|=|495446|=|49|=49

The absolute error for year 2 is the modulus of the difference between 495 and 446, which corresponds to 49. Therefore, the absolute error for year 2 is 49.

Calculation of the absolute error for year 3:

Absoluteerror=|Actual-Forecast|=|518490.1|=|27.9|=27.9

The absolute error for year 3 is the modulus of the difference between 518and490.1, which corresponds to 27.9. Therefore, the absolute error for year 3 is 27.9.

Calculation of the absolute error for year 4:

Absoluteerror=|Actual-Forecast|=|563515.21|=|47.79|=47.79

The absolute error for year 4 is the modulus of the difference between 563and515.21, which corresponds to 4.254. Therefore, the absolute error for year 4 is 47.79.

Calculation of the absolute error for year 5:

Absoluteerror=|Actual-Forecast|=|584558.221|=|25.779|=25.779

The absolute error for year 5 is the modulus of the difference between 584and558.221, which corresponds to 25.779. Therefore, the absolute error for year 5 is 25.779.

Calculation of the Mean Absolute Deviation using exponential smoothing:

MAD=|Actual-Forecast|n=40+49+27.9+47.79+25.7795=190.4695=38.093 (2)

Upon the substitution of summation value of absolute error for 5 years, that is, 190.469 is divided by the number of years. That is, 5 yields MAD of 38.093.

The forecast of sales using exponential smoothing with 0.9 as smoothing constant is 581.4221 and MAD is 38.093.

Forecast of sales using exponential smoothing with smoothing constant 0.3:

Given information:

Year Sales
1 450
2 495
3 518
4 563
5 584

Initial forecast for year 1=410Smoothingconstant=0.3

Formula to calculate the forecasted demand:

Ft=Ft-1+α(At-1-Ft-1)

Where,

Ft=newforecastFt-1=Previousperiod'sforecastα=smoothingconstantAt-1=PreviousperiodactualDemand

Smoothing constant=0.3
Year Sales Forecast Absolute error
1 450 410 40
2 495 422 73
3 518 443.9 74.1
4 563 466.13 96.87
5 584 495.191 88.809
6 521.8337
Total 372.779
MAD 74.5558

Excel worksheet:

Principles Of Operations Management, Chapter 4, Problem 17P , additional homework tip  3

Calculation of the forecast for year 2:

F2=F1+α(A1-F1)=410+0.3(450410)=422

To calculate the forecast for year 2, substitute the value of forecast of year 1, smoothing constant and difference of actual and forecasted demand in the above formula. The result of the forecast for year 2 is 422.

Calculation of the forecast for year 3:

F3=F2+α(A2-F2)=422+0.3(495422)=443.9

To calculate the forecast for year 3, substitute the value of forecast of year 2, smoothing constant and difference of actual and forecasted demand in the above formula. The result of the forecast for year 3 is 443.9.

Calculation of the forecast for year 4:

F4=F3+α(A3-F3)=443.9+0.3(518443.9)=466.13

To calculate the forecast for year 4, substitute the value of forecast of year 3, smoothing constant and difference of actual and forecasted demand in the above formula. The result of the forecast for year 4 is 466.13.

Calculation of the forecast for year 5:

F5=F4+α(A4-F4)=466.13+0.3(563466.13)=495.191

To calculate the forecast for year 5, substitute the value of forecast of year 4, smoothing constant and difference of actual and forecasted demand in the above formula. The result of the forecast for year 5 is 495.191.

Calculation of the forecast for year 6:

F6=F5+α(A5-F5)=495.191+0.9(584495.191)=521.833

To calculate the forecast for year 6, substitute the value of forecast of year 5, smoothing constant and difference of actual and forecasted demand in the above formula. The result of the forecast for year 6 is 521.833.

Calculation of MAD using exponential smoothing with smoothing constant α=0.3:

Formula to calculate the Mean Absolute Deviation:

MAD=|Actual-Forecast|n

Calculation of the absolute error for year 1:

Absoluteerror=|Actual-Forecast|=|450410|=|40|=40

The absolute error for year 1 is the modulus of the difference between 450 and 410, which corresponds to 40. Therefore, the absolute error for year 1 is 40.

Calculation of the absolute error for year 2:

Absoluteerror=|Actual-Forecast|=|495422|=|73|=73

The absolute error for year 2 is the modulus of the difference between 495 and 422, which corresponds to 73. Therefore, the absolute error for year 2 is 73.

Calculation of the absolute error for year 3:

Absoluteerror=|Actual-Forecast|=|518443.9|=|74.1|=74.1

The absolute error for year 3 is the modulus of the difference between 518 and 443.9, which corresponds to 74.1. Therefore, the absolute error for year 3 is 74.1.

Calculation of the absolute error for year 4:

Absoluteerror=|Actual-Forecast|=|563466.13|=|96.87|=96.87

The absolute error for year 4 is the modulus of the difference between 563 and 466.13, which corresponds to 96.87. Therefore, the absolute error for year 4 is 96.87.

Calculation of the absolute error for year 5:

Absoluteerror=|Actual-Forecast|=|584495.191|=|88.809|=88.809

The absolute error for year 5 is the modulus of the difference between 584 and 495.191, which corresponds to 88.809. Therefore, the absolute error for year 5 is 88.809.

Calculation of the Mean Absolute Deviation using exponential smoothing with 0.3 as smoothing constant:

MAD=|Actual-Forecast|n=40+73+74.1+96.87+88.8095=372.7795=74.5558 (3)

Upon the substitution of summation value of absolute error for 5 years, that is, 372.779 are divided by the number of years. That is, 5 yields MAD of 74.5558.

The forecast of sales using exponential smoothing with 0.3 as smoothing constant is 521.833 and MAD is 74.5558.

Hence, on comparing MAD from exponential smoothing with smoothing constant 0.3, 0.6 and 0.9 (refer to equations (1), (2) and (3)), it can be inferred that MAD of exponential smoothing with smoothing constant is most accurate because of least MAD.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is Bitcoin? How important is it to businesses and individuals? How does it cause environmental damage and is that damage worth continued uses of Bitcoin? Read the following articles to help answer these questions: United Nations University. (2023, October 24). UN study reveals the hidden environmental impacts of bitcoin: Carbon is not the only harmful by-product. https://unu.edu/press-release/un-study-reveals-hidden-environmental-impacts-bitcoin-carbon-not-only-harmful-product#:~:text=Bitcoin%2C%20the%20most%20popular%20cryptocurrency,the%20worldwide%20Bitcoin%20mining%20network. Salam, E. (2023, April 26). Bitcoin is terrible for the environment – can it ever go green? The Guardian. https://www.theguardian.com/technology/2023/apr/26/bitcoin-mining-climate-crisis-environmental-impact
419 X .com/courses/1546/assignments/49499?module_item_id=111573 Unlimited Attempts Allowed ✓ Details Directions: Record a video of yourself giving a business presentation. Imagine you are tasked with researching a professional development topic on business communication for 40 coworkers. You are then expected to give a 4 - 5 minute presentation on the topic. Choose any topic related to business communication, such as intercultural communication, effective leadership, professional writing, etc. Research the topic and prepare a 4 - 5 minute presentation that could be given over video conference call (such as Zoom). You may use visual aids if you choose. Upload a video file of your presentation. Provide all needed citations. Requirements: 4-5 minutes long Contains visual and audio Create your own work; do not plagiarize Cite your sources using APA citations Choose a submission type T
acts Container chips (s 150 cussion: Conflict X + e.com/courses/1546/discussion_topics/15722?module_item_id=111559 24 Winter > Discussions > Week 8 Discussion: Conflict 时☆ 26 Replies, 26 Unread Week 8 Discussion: Conflict Write a 200 - 300 word discussion post based on the prompt below. Reply to at least one other student in 50 - 100 words. Can you think of a time when a conflict led to a new opportunity, better understanding, or other positive result? If not, think of a past conflict and imagine a positive outcome. Discuss the impact of this conflict on your workplace relationships, productivity, and innovation. Source: Business Communication for Success. (2015). University of Minnesota Libraries Publishing. Attribution-NonCommerical-ShareAlike. Edit View Insert Format Tools Table 12ptv Paragraph BIUA T2

Chapter 4 Solutions

Principles Of Operations Management

Ch. 4 - What is the primary difference between a...Ch. 4 - Define time series.Ch. 4 - What effect does the value of the smoothing...Ch. 4 - Explain the value of seasonal indices in...Ch. 4 - Prob. 14DQCh. 4 - In your own words, explain adaptive forecasting.Ch. 4 - Prob. 16DQCh. 4 - Explain, in your own words, the meaning of the...Ch. 4 - Prob. 18DQCh. 4 - Give examples of industries that are affected by...Ch. 4 - Prob. 20DQCh. 4 - Prob. 21DQCh. 4 - CEO John Goodale, at Southern Illinois Power and...Ch. 4 - The following gives the number of pints of type B...Ch. 4 - a) Plot the above data on a graph. Do you observe...Ch. 4 - Refer to Problem 4.2. Develop a forecast for years...Ch. 4 - A check-processing center uses exponential...Ch. 4 - The Carbondale Hospital is considering the...Ch. 4 - The monthly sales for Yazici Batteries, Inc., were...Ch. 4 - Prob. 7PCh. 4 - Daily high temperatures in St. Louis for the last...Ch. 4 - Lenovo uses the ZX-81 chip in some of its laptop...Ch. 4 - Data collected on the yearly registrations for a...Ch. 4 - Use exponential smoothing with a smoothing...Ch. 4 - Prob. 12PCh. 4 - At you can see in the following table, demand for...Ch. 4 - Prob. 14PCh. 4 - Refer to Solved Problem 4.1 on page 144. a) Use a...Ch. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Income at the architectural firm Spraggins and...Ch. 4 - Resolve Problem 4.19 with = .1 and =.8. Using...Ch. 4 - Prob. 21PCh. 4 - Refer to Problem 4.21. Complete the trend-adjusted...Ch. 4 - Prob. 23PCh. 4 - The following gives the number of accidents that...Ch. 4 - In the past, Peter Kelles tire dealership in Baton...Ch. 4 - George Kyparisis owns a company that manufactures...Ch. 4 - Attendance at Orlandos newest Disneylike...Ch. 4 - Prob. 28PCh. 4 - The number of disk drives (in millions) made at a...Ch. 4 - Prob. 30PCh. 4 - Emergency calls to the 911 system of Durham, North...Ch. 4 - Using the 911 call data in Problem 4.31, forecast...Ch. 4 - Storrs Cycles has just started selling the new...Ch. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Mark Gershon, owner of a musical instrument...Ch. 4 - Prob. 44PCh. 4 - Cafe Michigans manager, Gary Stark, suspects that...Ch. 4 - Prob. 46PCh. 4 - The number of auto accidents in Athens, Ohio, is...Ch. 4 - Rhonda Clark, a Slippery Rock, Pennsylvania, real...Ch. 4 - Accountants at the Tucson firm, Larry Youdelman,...Ch. 4 - Prob. 50PCh. 4 - Using the data in Problem 4.30, apply linear...Ch. 4 - Bus and subway ridership for the summer months in...Ch. 4 - Prob. 53PCh. 4 - Dave Fletcher, the general manager of North...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Sales of tablet computers at Ted Glickmans...Ch. 4 - The following are monthly actual and forecast...Ch. 4 - Prob. 1CSCh. 4 - Prob. 2CSCh. 4 - Prob. 3CSCh. 4 - Prob. 1.1VCCh. 4 - Prob. 1.2VCCh. 4 - Using Perezs multiple-regression model, what would...Ch. 4 - Prob. 1.4VCCh. 4 - Prob. 2.1VCCh. 4 - Prob. 2.2VCCh. 4 - Prob. 2.3VCCh. 4 - Prob. 2.4VCCh. 4 - Prob. 2.5VC
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Text book image
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Text book image
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Text book image
Business in Action
Operations Management
ISBN:9780135198100
Author:BOVEE
Publisher:PEARSON CO
Text book image
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Text book image
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License