Physics
Physics
3rd Edition
ISBN: 9781259233616
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 172P

(a)

To determine

The net force on rocket during the first 1.5s after the liftoff.

(a)

Expert Solution
Check Mark

Answer to Problem 172P

Net force is 1.5N in upward direction.

Explanation of Solution

Acceleration of rocket in first 1.5s is 17.5m/s2, mass of rocket is 87g, and the fuel is much less than 87g.

Write the equation to find the net force on rocket.

Fnet=ma

Here, the net force is Fnet, mass of rocket is m, and the acceleration is a.

Conclusion:

Substitute 87g for m and 17.5m/s2 for a in the above equation to find Fnet.

Fnet=(87g1kg103g)(17.5m/s2)=1.5N

The direction of Fnet is the direction of motion of rocket itself.

Therefore, the net force is 1.5N in upward direction.

(b)

To determine

The force exerted by the burning fuel on the rocket.

(b)

Expert Solution
Check Mark

Answer to Problem 172P

Exerted force is 2.4N in upward direction.

Explanation of Solution

Acceleration of rocket in first 1.5s is 17.5m/s2, mass of rocket is 87g, and the fuel is much less than 87g.

Write the equation to find the force exerted by the burning fuel on rocket.

Ffuel=Fnet+mg

Here, the force exerted by the burning fuel is Ffuel and the gravitational acceleration is g.

Conclusion:

Substitute 1.5N for Fnet, 87g for m and 9.80m/s2 for g in the above equation to find Fnet.

Ffuel=1.5N+((87g1kg103g)(17.5m/s2))=1.5N+0.853=2.4N

The direction of Ffuel is the direction of motion of rocket itself.

Therefore, the exerted force is 2.4N in upward direction.

(c)

To determine

The distance travelled by the rocket.

(c)

Expert Solution
Check Mark

Answer to Problem 172P

Distance travelled is 55m.

Explanation of Solution

Acceleration of rocket in first 1.5s is 17.5m/s2, mass of rocket is 87g, and the fuel is much less than 87g.

Write the equation to calculate the distance travelled by rocket during the burning time.

x1=ut+12at2 (I)

Here, the distance travelled by the rocket during the burning time is x1, initial velocity is u, and the time taken is t.

Write the equation for the upward speed.

v=at (II)

Here, the upward speed achieved by the rocket is a.

Write the equation to calculate the time taken to reduce the velocity from v to zero in the free fall.

tfree=vg (III)

Write the equation to calculate the distance travelled by rocket during the free fall period.

x2=12(v1+v)tfree (IV)

Here, the final speed of motion in free fall is v1

Write the equation for the total distance traveled by the rocket.

x=x1+x2 (V)

Here, the total distance travelled is x.

Conclusion:

Substitute 0m/s for u, 1.5s for t, and 17.5m/s2 for a in equation (I) to find x1.

x1=(0m/s)(1.5s)+12(17.5m/s2)(1.5s)2=0m+19.7m=19.7m

Substitute 17.5m/s2 for a and 1.5s for t in equation (II) to find v.

v=17.5m/s21.5s=26.25m/s

Substitute 26.25m/s for v and 9.80m/s for g in equation (III) to find tfree.

tfree=26.25m/s9.80m/s=2.68s

Substitute 0m/s for v1, 26.25m/s for v, and 2.68s for tfree in equation (IV) to find x2.

x2=12(0m/s+26.25m/s)(2.68s)=35.2m

Substitute 19.7m for x1 and 35.2m for x2 in equation (V) to find x.

x=19.7m+35.2m=55m

Therefore, the distance travelled is 55m.

(d)

To determine

The time taken by the rocket to return to the ground after liftoff.

(d)

Expert Solution
Check Mark

Answer to Problem 172P

Time taken is 3.35s.

Explanation of Solution

Acceleration of rocket in first 1.5s is 17.5m/s2, mass of rocket is 87g, and the fuel is much less than 87g.

Write the equation to find the time taken by the rocket to fall from rest from height x.

tele=2xg (VI)

Here, the time taken by the rocket to fall from rest from height x is tele.

Write the equation to find the time taken by the rocket to return to the ground after liftoff.

ttotal=t+tfree+tele (VII)

Here, the total time taken by the rocket to return to the ground after liftoff is ttotal.

Conclusion:

Substitute 55m for x and 9.80m/s2 for g in equation (VI) to find tele.

tele=2(55m)9.80m/s2=11.22s=3.35s

Substitute 1.5s for t, 2.68s for tfree, and 3.35s for tele in equation (VII) to find ttotal.

ttotal=1.5s+2.68s+3.35s=7.5s

Therefore, the time taken is 3.35s.

(e)

To determine

Plot the velocity –time relation of rocket for the entire travel from the launch to the return back to the ground.

(e)

Expert Solution
Check Mark

Explanation of Solution

Acceleration of rocket in first 1.5s is 17.5m/s2, mass of rocket is 87g, and the fuel is much less than 87g.

The velocity –time relation of rocket for the entire travel from the launch to the return back to the ground is shown below in figure 1.

Physics, Chapter 4, Problem 172P

In first 1.5s, rocket travels upwards. After that, rocket starts to move towards ground. The point of maxima denotes the instant at which rocket changes its direction.

Therefore, the time taken is 3.35s.

(f)

To determine

The net force on rocket after the complete usage of fuel.

(f)

Expert Solution
Check Mark

Answer to Problem 172P

The net force is 0.85N in downward direction.

Explanation of Solution

Acceleration of rocket in first 1.5s is 17.5m/s2, mass of rocket is 87g, and the fuel is much less than 87g.

After the fuel is completely used, the rocket is in free fall. At that moment, the net force on the rocket is its weight itself.

Write the expression for the weight of rocket.

Fnet=mg

Here, the net force is Fnet.

Conclusion:

Substitute 87g for m and 9.80m/s2 for g in the above equation to find Fnet.

Fnet=(87g(1kg103g))(9.80m/s2)=0.85N

Since weight is acting vertically downwards, Fnet is also in downward direction.

Therefore, the net force is 0.85N in downward direction.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.
A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.
For each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=

Chapter 4 Solutions

Physics

Ch. 4.5 - CHECKPOINT 4.5 If you climb Mt. McKinley, what...Ch. 4.5 - Practice Problem 4.7 Figs on the Moon What would...Ch. 4.6 - CHECKPOINT 4.6 Your laptop is resting on the...Ch. 4.6 - Practice Problem 4.8 Chest at Rest Suppose the...Ch. 4.6 - Practice Problem 4.9 Passing a Truck A car is...Ch. 4.6 - Practice Problem 4.10 Smoothing the Infield...Ch. 4.7 - Practice Problem 4.11 Tightrope Practice Jorge...Ch. 4.7 - Practice Problem 4.12 System of Ropes, Pulleys,...Ch. 4.8 - Practice Problem 4.13 The Continuing Story … How...Ch. 4.8 - Practice Problem 4.14 Coupling Force Between First...Ch. 4.8 - Practice Problem 4.15 Another Check Using the...Ch. 4.8 - Practice Problem 4.16 Hauling the Crate with a...Ch. 4.8 - Practice Problem 4.17 Engine Thrust What is the...Ch. 4.8 - Prob. 4.18PPCh. 4.8 - Prob. 4.8CPCh. 4.10 - Practice Problem 4.19 Elevator Descending What is...Ch. 4.10 - Prob. 4.10CPCh. 4 - Prob. 1CQCh. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Prob. 4CQCh. 4 - Prob. 5CQCh. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Prob. 9CQCh. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Prob. 14CQCh. 4 - 15. A heavy ball hangs from a string attached to a...Ch. 4 - 16. An SUV collides with a Mini Cooper...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - Prob. 20CQCh. 4 - Prob. 21CQCh. 4 - Prob. 22CQCh. 4 - Prob. 23CQCh. 4 - 24. Pulleys and inclined planes are examples of...Ch. 4 - Prob. 25CQCh. 4 - Prob. 26CQCh. 4 - Prob. 27CQCh. 4 - Prob. 28CQCh. 4 - Prob. 29CQCh. 4 - Prob. 30CQCh. 4 - Prob. 31CQCh. 4 - Prob. 32CQCh. 4 - Prob. 1MCQCh. 4 - Prob. 2MCQCh. 4 - Prob. 3MCQCh. 4 - Prob. 4MCQCh. 4 - Prob. 5MCQCh. 4 - Prob. 6MCQCh. 4 - Prob. 7MCQCh. 4 - Prob. 8MCQCh. 4 - Prob. 9MCQCh. 4 - Prob. 10MCQCh. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 - Prob. 13MCQCh. 4 - Prob. 14MCQCh. 4 - Prob. 15MCQCh. 4 - Prob. 16MCQCh. 4 - Prob. 17MCQCh. 4 - Prob. 18MCQCh. 4 - Prob. 19MCQCh. 4 - Prob. 20MCQCh. 4 - Prob. 21MCQCh. 4 - Prob. 22MCQCh. 4 - Prob. 23MCQCh. 4 - Prob. 24MCQCh. 4 - Prob. 25MCQCh. 4 - Prob. 26MCQCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - 16. A truck driving on a level highway is acted on...Ch. 4 - 17. A tennis ball (mass 57.0 g) moves toward the...Ch. 4 - 18. A red-tailed hawk that weighs 8 N is gliding...Ch. 4 - 19. An 80 N crate of apples sits at rest on the...Ch. 4 - 20. Forces of magnitudes 2000 N and 3000 N act on...Ch. 4 - 21. A person stands on the ball of one foot. The...Ch. 4 - 22. A sailboat, tied to a mooring with a line,...Ch. 4 - 23. A hummingbird is hovering motionless beside a...Ch. 4 - 24. You are pulling a suitcase through the airport...Ch. 4 - Prob. 25PCh. 4 - 26. A man is lazily floating on an air mattress in...Ch. 4 - 27. What is the acceleration of an automobile of...Ch. 4 - 28. A bag of potatoes with weight 39.2 N is...Ch. 4 - 29. A large wooden crate is pushed along a...Ch. 4 - 30. A hanging plant is suspended by a cord from a...Ch. 4 - 31. A bike is hanging from a hook in a garage....Ch. 4 - 32. A woman who weighs 600 N sits on a chair with...Ch. 4 - 33. A fisherman is holding a fishing rod with a...Ch. 4 - 34. In Problem 33, identify the forces acting on...Ch. 4 - Problems 35–37. A skydiver, who weighs 650 N, is...Ch. 4 - 36. (a) Identify the forces acting on the...Ch. 4 - 37. Consider the skydiver and parachute to be a...Ch. 4 - 38. Margie, who weighs 543 N, is standing on a...Ch. 4 - 39. (a) Calculate your weight in newtons. (b) What...Ch. 4 - 40. A young South African girl has a mass of 40.0...Ch. 4 - 41. A man weighs 0.80 kN on Earth. What is his...Ch. 4 - 42. The peak force on a runner’s foot during a...Ch. 4 - 43. In a binary star system, two stars orbit their...Ch. 4 - 44. An astronaut stands at a position on the Moon...Ch. 4 - 45. Find the ratio of the Earth’s gravitational...Ch. 4 - 46. How far above the surface of the Earth does an...Ch. 4 - 47. Find and compare the weight of a 65 kg man on...Ch. 4 - 48. Find the altitudes above the Earth’s surface...Ch. 4 - 49. During a balloon ascension, wearing an oxygen...Ch. 4 - 50. At what altitude above the Earth’s surface...Ch. 4 - 51. (a) What is the magnitude of the gravitational...Ch. 4 - 52. What is the approximate magnitude of the...Ch. 4 - 53. In free fall, we assume the acceleration to be...Ch. 4 - 54. A solar sailplane is going from Earth to Mars....Ch. 4 - Problems 55–57. Assume the elevator is supported...Ch. 4 - 56. While an elevator of mass 2530 kg moves...Ch. 4 - 57. While an elevator of mass 832 kg moves...Ch. 4 - 58. The vertical component of the acceleration of...Ch. 4 - 59. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - 60. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - Prob. 61PCh. 4 - 62. A binary star consists of two stars of masses...Ch. 4 - 63. Mechanical advantage is the ratio of the force...Ch. 4 - 64. A book rests on the surface of the table....Ch. 4 - 65. A crate of artichokes is on a ramp that is...Ch. 4 - Prob. 66PCh. 4 - 67. An 85 kg skier is sliding down a ski slope at...Ch. 4 - 68. A book that weighs 10 N is at rest in six...Ch. 4 - 69. Strategy While the crate is remaining at rest,...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - 73. (a) In Example 4.10, if the movers stop...Ch. 4 - 74. A 3.0 kg block is at rest on a horizontal...Ch. 4 - 75. A horse is trotting along pulling a sleigh...Ch. 4 - 76. Before hanging new William Morris wallpaper in...Ch. 4 - 77. A conveyor belt carries apples up an incline...Ch. 4 - 78. A box sits on a horizontal wooden ramp. The...Ch. 4 - 79. In a playground, two slides have different...Ch. 4 - 80. A sailboat is tied to a mooring with a...Ch. 4 - 81. A towline is attached between a car and a...Ch. 4 - 82. In Example 4.14, find the tension in the...Ch. 4 - 83. A 200.0 N sign is suspended from a horizontal...Ch. 4 - 84. Strategy Use Newton’s first law of motion. The...Ch. 4 - 85. A pulley is attached to the ceiling. Spring...Ch. 4 - 86. Spring scale A is attached to the floor and a...Ch. 4 - 87. Two springs are connected in series so that...Ch. 4 - 88. A pulley is hung from the ceiling by a rope. A...Ch. 4 - 89. A 2.0 kg ball tied to a string fixed to the...Ch. 4 - Prob. 90PCh. 4 - 91. A 45 N lithograph is supported by two wires....Ch. 4 - 92. A crow perches on a clothesline midway between...Ch. 4 - 93. The drawing shows a wire attached to two back...Ch. 4 - 94. A cord cut into two equal sections, with a...Ch. 4 - 95. Two blocks, masses m1 and m2, are connected by...Ch. 4 - 96. The coefficient of static friction between a...Ch. 4 - 97. A 2.0 kg toy locomotive is pulling a 1.0 kg...Ch. 4 - 98. An engine pulls a train of 20 freight cars,...Ch. 4 - Prob. 99PCh. 4 - 100. A rope is attached from a truck to a 1400 kg...Ch. 4 - 101. An accelerometer—a device to measure...Ch. 4 - 102. A box full of books rests on a wooden floor....Ch. 4 - 103. A helicopter is lifting two crates...Ch. 4 - 104. A person stands on a bathroom scale in an...Ch. 4 - 105. Oliver has a mass of 76.2 kg. He is riding in...Ch. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - 110. Yolanda, whose mass is 64.2 kg, is riding in...Ch. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - 134. The tallest spot on Earth is Mt. Everest,...Ch. 4 - Prob. 135PCh. 4 - Prob. 136PCh. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - Prob. 143PCh. 4 - Prob. 144PCh. 4 - Prob. 145PCh. 4 - Prob. 146PCh. 4 - Prob. 147PCh. 4 - Prob. 148PCh. 4 - Prob. 149PCh. 4 - Prob. 150PCh. 4 - Prob. 151PCh. 4 - Prob. 152PCh. 4 - Prob. 153PCh. 4 - Prob. 154PCh. 4 - 155. You want to lift a heavy box with a mass of...Ch. 4 - 156. A crate of oranges weighing 180 N rests on a...Ch. 4 - Prob. 157PCh. 4 - Prob. 158PCh. 4 - 159. A helicopter of mass M is lowering a truck of...Ch. 4 - Prob. 160PCh. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - Prob. 163PCh. 4 - 164. A person is doing leg lifts with 3.00 kg...Ch. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - Prob. 167PCh. 4 - Prob. 168PCh. 4 - Prob. 169PCh. 4 - Prob. 170PCh. 4 - Prob. 171PCh. 4 - Prob. 172PCh. 4 - Prob. 173PCh. 4 - Prob. 174PCh. 4 - Prob. 175PCh. 4 - Prob. 176PCh. 4 - Prob. 177PCh. 4 - Prob. 178PCh. 4 - Prob. 179P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY