
Concept explainers
(a)
The point at which the force of gravity on the spacecraft due to the Sun is as large as that due to the Earth.
(a)

Answer to Problem 161P
The point at which the force of gravity on the spacecraft due to the Sun is as large as that due to the Earth is
Explanation of Solution
Write the expression for the magnitude of gravitational force of Sun on the spacecraft.
Here,
Write the expression for the magnitude of gravitational force of Earth on the spacecraft.
Here,
Equate the right hand sides of equations (I) and (II) since the forces are to be equal, and solve for
Write the expression for
Use equation (IV) in (III).
The mass of Sun is
Conclusion:
Substitute
Therefore, the point at which the force of gravity on the spacecraft due to the Sun is as large as that due to the Earth is
(b)
Whether the net force on the spacecraft tend to push it toward or away from equilibrium point when the spacecraft is close to, but not at the equilibrium point.
(b)

Answer to Problem 161P
The net force on the spacecraft tend to push it
Explanation of Solution
At the equilibrium point, the gravitational force on the spacecraft due to the Sun and the Earth are equal in magnitude but opposite in direction. Thus, the net gravitational force is zero at that point. When the spacecraft is close to the Earth than at equilibrium point, the force due to Earth is greater than that due to the Sun. Similarly, when the spacecraft is close to the Sun than at equilibrium point, the force due to Sun is greater than that due to the Earth.
In both cases, if the spacecraft is close to, but not at the equilibrium point, then it will be pulled away from the equilibrium point such that it falls towards the stronger field source.
Conclusion:
Therefore, the net force on the spacecraft tend to push it
Want to see more full solutions like this?
Chapter 4 Solutions
Physics
- A plank 2.00 cm thick and 15.7 cm wide is firmly attached to the railing of a ship by clamps so that the rest of the board extends 2.00 m horizontally over the sea below. A man of mass 92.9 kg is forced to stand on the very end. If the end of the board drops by 5.97 cm because of the man's weight, find the shear modulus of the wood.arrow_forwardwhen considering particle B (4,1) distances in relation to P (-4, 5), why are the y coordinates being used gto resolve the distance along the x-axis and vice-versa?arrow_forwardA 198 kg load is hung on a wire of length of 3.58 m, cross-sectional area 2.00⋅ 10-5 m2, and Young's modulus 8.00⋅10^10 Pa. What is its increase in length?arrow_forward
- I. Pushing on a File Cabinet Bob has been asked to push a heavy file cabinet down the hall to another office. It's not on rollers, so there is a lot of friction. At time t = 0 seconds, he starts pushing it from rest with increasing force until it starts to move at t = 2 seconds. He pushes the file cabinet down the hall with varying amounts of force. The velocity versus time graph of the cabinet is shown below. A. On the graphs provided below, 1. draw the net force vs. time that would produce this velocity graph; 2. draw the friction force vs. time for this motion; 3. draw the applied force (Fon Cabinet by Bob) VS. time for this motion (the first two seconds of this graph have been drawn for you). Velocity (m/s) Applied Force (N) Friction Force (N) Net Force (N) A -m B -U time (s) D time (s) time (s) time (s)arrow_forwardanswer itarrow_forwardPlease draw a sketch and a FBDarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





