
Physics
3rd Edition
ISBN: 9781259233616
Author: GIAMBATTISTA
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 138P
To determine
The magnitude and direction of the contact force exerted on the patella by the femur.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
64. Two springs have the same unstretched length but different spring
constants, k₁ and k₂. (a) If they're connected side by side and
stretched a distance x, as shown in Fig. 4.24a, show that the force
exerted by the combination is (k₁ + k₂)x. (b) If they're con-
nected end to end (Fig. 4.24b) and the combination is stretched a
distance x, show that they exert a force k₁k2x/(k₁ + k₂).
www
(a)
FIGURE 4.24 Problem 65
www
(b)
65. Although we usually write Newton's second law for one-dimensional
motion in the form F =ma, which holds when mass is constant,
d(mv)
a more fundamental version is F
=
.
Consider an object
dt
whose mass is changing, and use the product rule for derivatives to
show that Newton's law then takes the form F
dm
= ma + v
dt
If a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?
Chapter 4 Solutions
Physics
Ch. 4.1 - CHECKPOINT 4.1A
Identify the forces acting on the...Ch. 4.1 - Prob. 4.1PPCh. 4.1 - Prob. 4.1BCPCh. 4.1 - Prob. 4.2PPCh. 4.2 - Prob. 4.3PPCh. 4.2 - Prob. 4.2CPCh. 4.2 - Prob. 4.4PPCh. 4.4 - Prob. 4.5PPCh. 4.4 - Prob. 4.4CPCh. 4.5 - Practice Problem 4.6 A Creative Defense
After an...
Ch. 4.5 - CHECKPOINT 4.5
If you climb Mt. McKinley, what...Ch. 4.5 - Practice Problem 4.7 Figs on the Moon
What would...Ch. 4.6 - CHECKPOINT 4.6
Your laptop is resting on the...Ch. 4.6 - Practice Problem 4.8 Chest at Rest
Suppose the...Ch. 4.6 - Practice Problem 4.9 Passing a Truck
A car is...Ch. 4.6 - Practice Problem 4.10 Smoothing the Infield...Ch. 4.7 - Practice Problem 4.11 Tightrope Practice
Jorge...Ch. 4.7 - Practice Problem 4.12 System of Ropes, Pulleys,...Ch. 4.8 - Practice Problem 4.13 The Continuing Story …
How...Ch. 4.8 - Practice Problem 4.14 Coupling Force Between First...Ch. 4.8 - Practice Problem 4.15 Another Check
Using the...Ch. 4.8 - Practice Problem 4.16 Hauling the Crate with a...Ch. 4.8 - Practice Problem 4.17 Engine Thrust
What is the...Ch. 4.8 - Prob. 4.18PPCh. 4.8 - Prob. 4.8CPCh. 4.10 - Practice Problem 4.19 Elevator Descending
What is...Ch. 4.10 - Prob. 4.10CPCh. 4 - Prob. 1CQCh. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Prob. 4CQCh. 4 - Prob. 5CQCh. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Prob. 9CQCh. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Prob. 14CQCh. 4 - 15. A heavy ball hangs from a string attached to a...Ch. 4 - 16. An SUV collides with a Mini Cooper...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - Prob. 20CQCh. 4 - Prob. 21CQCh. 4 - Prob. 22CQCh. 4 - Prob. 23CQCh. 4 - 24. Pulleys and inclined planes are examples of...Ch. 4 - Prob. 25CQCh. 4 - Prob. 26CQCh. 4 - Prob. 27CQCh. 4 - Prob. 28CQCh. 4 - Prob. 29CQCh. 4 - Prob. 30CQCh. 4 - Prob. 31CQCh. 4 - Prob. 32CQCh. 4 - Prob. 1MCQCh. 4 - Prob. 2MCQCh. 4 - Prob. 3MCQCh. 4 - Prob. 4MCQCh. 4 - Prob. 5MCQCh. 4 - Prob. 6MCQCh. 4 - Prob. 7MCQCh. 4 - Prob. 8MCQCh. 4 - Prob. 9MCQCh. 4 - Prob. 10MCQCh. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 - Prob. 13MCQCh. 4 - Prob. 14MCQCh. 4 - Prob. 15MCQCh. 4 - Prob. 16MCQCh. 4 - Prob. 17MCQCh. 4 - Prob. 18MCQCh. 4 - Prob. 19MCQCh. 4 - Prob. 20MCQCh. 4 - Prob. 21MCQCh. 4 - Prob. 22MCQCh. 4 - Prob. 23MCQCh. 4 - Prob. 24MCQCh. 4 - Prob. 25MCQCh. 4 - Prob. 26MCQCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - 16. A truck driving on a level highway is acted on...Ch. 4 - 17. A tennis ball (mass 57.0 g) moves toward the...Ch. 4 - 18. A red-tailed hawk that weighs 8 N is gliding...Ch. 4 - 19. An 80 N crate of apples sits at rest on the...Ch. 4 - 20. Forces of magnitudes 2000 N and 3000 N act on...Ch. 4 - 21. A person stands on the ball of one foot. The...Ch. 4 - 22. A sailboat, tied to a mooring with a line,...Ch. 4 - 23. A hummingbird is hovering motionless beside a...Ch. 4 - 24. You are pulling a suitcase through the airport...Ch. 4 - Prob. 25PCh. 4 - 26. A man is lazily floating on an air mattress in...Ch. 4 - 27. What is the acceleration of an automobile of...Ch. 4 - 28. A bag of potatoes with weight 39.2 N is...Ch. 4 - 29. A large wooden crate is pushed along a...Ch. 4 - 30. A hanging plant is suspended by a cord from a...Ch. 4 - 31. A bike is hanging from a hook in a garage....Ch. 4 - 32. A woman who weighs 600 N sits on a chair with...Ch. 4 - 33. A fisherman is holding a fishing rod with a...Ch. 4 - 34. In Problem 33, identify the forces acting on...Ch. 4 - Problems 35–37. A skydiver, who weighs 650 N, is...Ch. 4 - 36. (a) Identify the forces acting on the...Ch. 4 - 37. Consider the skydiver and parachute to be a...Ch. 4 - 38. Margie, who weighs 543 N, is standing on a...Ch. 4 - 39. (a) Calculate your weight in newtons. (b) What...Ch. 4 - 40. A young South African girl has a mass of 40.0...Ch. 4 - 41. A man weighs 0.80 kN on Earth. What is his...Ch. 4 - 42. The peak force on a runner’s foot during a...Ch. 4 - 43. In a binary star system, two stars orbit their...Ch. 4 - 44. An astronaut stands at a position on the Moon...Ch. 4 - 45. Find the ratio of the Earth’s gravitational...Ch. 4 - 46. How far above the surface of the Earth does an...Ch. 4 - 47. Find and compare the weight of a 65 kg man on...Ch. 4 - 48. Find the altitudes above the Earth’s surface...Ch. 4 - 49. During a balloon ascension, wearing an oxygen...Ch. 4 - 50. At what altitude above the Earth’s surface...Ch. 4 - 51. (a) What is the magnitude of the gravitational...Ch. 4 - 52. What is the approximate magnitude of the...Ch. 4 - 53. In free fall, we assume the acceleration to be...Ch. 4 - 54. A solar sailplane is going from Earth to Mars....Ch. 4 - Problems 55–57. Assume the elevator is supported...Ch. 4 - 56. While an elevator of mass 2530 kg moves...Ch. 4 - 57. While an elevator of mass 832 kg moves...Ch. 4 - 58. The vertical component of the acceleration of...Ch. 4 - 59. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - 60. A man lifts a 2.0 kg stone vertically with his...Ch. 4 - Prob. 61PCh. 4 - 62. A binary star consists of two stars of masses...Ch. 4 - 63. Mechanical advantage is the ratio of the force...Ch. 4 - 64. A book rests on the surface of the table....Ch. 4 - 65. A crate of artichokes is on a ramp that is...Ch. 4 - Prob. 66PCh. 4 - 67. An 85 kg skier is sliding down a ski slope at...Ch. 4 - 68. A book that weighs 10 N is at rest in six...Ch. 4 - 69. Strategy While the crate is remaining at rest,...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - Problems 69–72. A crate of potatoes of mass 18.0...Ch. 4 - 73. (a) In Example 4.10, if the movers stop...Ch. 4 - 74. A 3.0 kg block is at rest on a horizontal...Ch. 4 - 75. A horse is trotting along pulling a sleigh...Ch. 4 - 76. Before hanging new William Morris wallpaper in...Ch. 4 - 77. A conveyor belt carries apples up an incline...Ch. 4 - 78. A box sits on a horizontal wooden ramp. The...Ch. 4 - 79. In a playground, two slides have different...Ch. 4 - 80. A sailboat is tied to a mooring with a...Ch. 4 - 81. A towline is attached between a car and a...Ch. 4 - 82. In Example 4.14, find the tension in the...Ch. 4 - 83. A 200.0 N sign is suspended from a horizontal...Ch. 4 - 84. Strategy Use Newton’s first law of motion. The...Ch. 4 - 85. A pulley is attached to the ceiling. Spring...Ch. 4 - 86. Spring scale A is attached to the floor and a...Ch. 4 - 87. Two springs are connected in series so that...Ch. 4 - 88. A pulley is hung from the ceiling by a rope. A...Ch. 4 - 89. A 2.0 kg ball tied to a string fixed to the...Ch. 4 - Prob. 90PCh. 4 - 91. A 45 N lithograph is supported by two wires....Ch. 4 - 92. A crow perches on a clothesline midway between...Ch. 4 - 93. The drawing shows a wire attached to two back...Ch. 4 - 94. A cord cut into two equal sections, with a...Ch. 4 - 95. Two blocks, masses m1 and m2, are connected by...Ch. 4 - 96. The coefficient of static friction between a...Ch. 4 - 97. A 2.0 kg toy locomotive is pulling a 1.0 kg...Ch. 4 - 98. An engine pulls a train of 20 freight cars,...Ch. 4 - Prob. 99PCh. 4 - 100. A rope is attached from a truck to a 1400 kg...Ch. 4 - 101. An accelerometer—a device to measure...Ch. 4 - 102. A box full of books rests on a wooden floor....Ch. 4 - 103. A helicopter is lifting two crates...Ch. 4 - 104. A person stands on a bathroom scale in an...Ch. 4 - 105. Oliver has a mass of 76.2 kg. He is riding in...Ch. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - 110. Yolanda, whose mass is 64.2 kg, is riding in...Ch. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - 134. The tallest spot on Earth is Mt. Everest,...Ch. 4 - Prob. 135PCh. 4 - Prob. 136PCh. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - Prob. 143PCh. 4 - Prob. 144PCh. 4 - Prob. 145PCh. 4 - Prob. 146PCh. 4 - Prob. 147PCh. 4 - Prob. 148PCh. 4 - Prob. 149PCh. 4 - Prob. 150PCh. 4 - Prob. 151PCh. 4 - Prob. 152PCh. 4 - Prob. 153PCh. 4 - Prob. 154PCh. 4 - 155. You want to lift a heavy box with a mass of...Ch. 4 - 156. A crate of oranges weighing 180 N rests on a...Ch. 4 - Prob. 157PCh. 4 - Prob. 158PCh. 4 - 159. A helicopter of mass M is lowering a truck of...Ch. 4 - Prob. 160PCh. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - Prob. 163PCh. 4 - 164. A person is doing leg lifts with 3.00 kg...Ch. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - Prob. 167PCh. 4 - Prob. 168PCh. 4 - Prob. 169PCh. 4 - Prob. 170PCh. 4 - Prob. 171PCh. 4 - Prob. 172PCh. 4 - Prob. 173PCh. 4 - Prob. 174PCh. 4 - Prob. 175PCh. 4 - Prob. 176PCh. 4 - Prob. 177PCh. 4 - Prob. 178PCh. 4 - Prob. 179P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a single square loop of wire of area A carrying a current I in a uniform magnetic field of strength B. The field is pointing directly up the page in the plane of the page. The loop is oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the normal vector for the loop is always in the plane of the page!). In the illustrations below the magnetic field is shown in red and the current through the current loop is shown in blue. The loop starts out in orientation (i) and rotates clockwise, through orientations (ii) through (viii) before returning to (i). (i) Ø I N - - I N - (iii) (iv) (v) (vii) (viii) a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector μ of the current loop and indicate whether the torque on the dipole due to the magnetic field is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the loop experience the maximum magnitude of torque? [Hint: Use the…arrow_forwardPlease help with calculating the impusle, thanks! Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse: 1.Measure the weight of the balls and determine their mass. Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Secondarrow_forward5. Three blocks, each with mass m, are connected by strings and are pulled to the right along the surface of a frictionless table with a constant force of magnitude F. The tensions in the strings connecting the masses are T1 and T2 as shown. m T1 T2 F m m How does the magnitude of tension T₁ compare to F? A) T₁ = F B) T₁ = (1/2)F C) T₁ = (1/3)F D) T₁ = 2F E) T₁ = 3Farrow_forward
- Using Coulombs Law, what is the magnitude of the electrical force between two protons located 1 meter apart from each other in Newtons?arrow_forwardCalculate the magnitude of the gravitational force between 2 protons located 1 meter apart from each other in Newtons using Newton's Law of Universal Gravitation.arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere if there is a distance 25 cm from the person to the sphere using Coulomb's Law to calculate the electrical force. Give your answer as the number of Coulombs (with no unit label, as usual).arrow_forward
- A balloon is rubbed on a sweater, giving the balloon a negative charge by adding an extra 3.9 x 107 electrons compared to its neutral state. What is the magnitude of the net charge on the balloon, in Coulombs?arrow_forwardA ping pong ball and a tennis ball are dropped and there is a very small gap between them when the tennis ball hits the floor. Indicate the directions of the momentums of the ping pong ball and the tennis ball after the tennis ball collides with the floor, but before the balls collide with each other. (Drawing a diagram may be helpful.)arrow_forwardDescribe how the momentum of a single ball changes as it free falls from a height of approximately 1 m, collides with a hard floor, and rebounds.arrow_forward
- If the answer is 2.8, -2.8 or -8.4, it is not CORRECTarrow_forwardThree blocks, light connecting ropes, and a light frictionless pulley comprise a system, as shown in the figure. An external force of magnitude P is applied downward on block A, causing block A to accelerate downward at a constant 2.5 m/s2. The tension in the rope connecting block B and block C is equal to 60 N. (a) What is the magnitude of the force P? (b) What is the mass of block C?arrow_forwardCurrent Attempt in Progress In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm? d Number MI Units +qarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY