
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 16EAP
On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The free-fall acceleration on the moon is 1/6 of its value on earth. Suppose he hit the ball with a speed of 25 m/s at an angle 300 above the horizontal.
a. How much farther did the ball travel on the moon than it would have on earth?
b. For how much more time was the ball in flight’?
Expert Solution & Answer

Learn your wayIncludes step-by-step video

schedule08:31
Students have asked these similar questions
No chatgpt pls will upvote
4.) The diagram shows the electric field lines of a positively charged conducting sphere of
radius R and charge Q.
A
B
Points A and B are located on the same field line.
A proton is placed at A and released from rest. The magnitude of the work done by the electric field in
moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of
the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere.
(a) Explain why the electric potential decreases from A to B. [2]
(b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the
sphere.
R
[2]
(c(i)) Calculate the electric potential difference between points A and B. [1]
(c(ii)) Determine the charge Q of the sphere. [2]
(d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists
developed a common terminology to describe different types of fields. [1]
3.) The graph shows how current I varies with potential difference V across a component X.
904
80-
70-
60-
50-
I/MA
40-
30-
20-
10-
0+
0
0.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VIV
Component X and a cell of negligible internal resistance are placed in a circuit.
A variable resistor R is connected in series with component X. The ammeter reads 20mA.
4.0V
4.0V
Component X and the cell are now placed in a potential divider circuit.
(a) Outline why component X is considered non-ohmic. [1]
(b(i)) Determine the resistance of the variable resistor. [3]
(b(ii)) Calculate the power dissipated in the circuit. [1]
(c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider
is moved from Q to P. [1]
(c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider
arrangement over the arrangement in (b).
Chapter 4 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 4 - a. At this instant, is the particle in FIGURE Q4.1...Ch. 4 - a. At this instant, is the particle in FIGURE Q4.2...Ch. 4 - Tarzan swings through the jungle by hanging from a...Ch. 4 - A projectile is launched at an angle of 30°. a. Is...Ch. 4 - For a projectile, which of the following...Ch. 4 - A cart that is rolling at constant velocity on a...Ch. 4 - A rock is thrown from a bridge at an angle 30°...Ch. 4 - Anita is running to the right at 5 m/s in FIGURE...Ch. 4 - An electromagnet on the ceiling of an airplane...Ch. 4 - Zack is driving past his house in FIGURE Q4.1O. He...
Ch. 4 - II. In FIGURE Q4.11. Yvette and Zack are driving...Ch. 4 - In uniform circular motion, which of the following...Ch. 4 - FIGURE Q4.13 shows three points on a steadily...Ch. 4 - FIGURE Q4.14 shows four rotating wheels. For each,...Ch. 4 - FIGURE Q4.15 shows a pendulum at one end point of...Ch. 4 - Problems I and 2 show a partial motion diagram....Ch. 4 - Prob. 2EAPCh. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - A rocket-powered hockey puck moves on a horizontal...Ch. 4 - A rocket-powered hockey puck moves on a horizontal...Ch. 4 - Prob. 8EAPCh. 4 - A particle moving in the xy- plane has velocity v...Ch. 4 - You have a remote-controlled car that has been...Ch. 4 - A ball thrown horizontally at 25 m/s travels a...Ch. 4 - A physics student on the Planet Exidor throws a...Ch. 4 - A supply plane needs to drop a package of food to...Ch. 4 - A rifle is aimed horizontally at a target 50 m...Ch. 4 - In the Olympic shotput event, an athlete throws...Ch. 4 - On the Apollo 14 mission to the moon, astronaut...Ch. 4 - A baseball player friend of yours wants to...Ch. 4 - A boat takes 3.0 hours to travel 30 km down a...Ch. 4 - When the moving sidewalk at the airport is broken,...Ch. 4 - Prob. 20EAPCh. 4 - A kayaker, needs to paddle north across a...Ch. 4 - Susan, driving north at 60 mph, and Trent, driving...Ch. 4 - FIGURE EX4.23 shows the...Ch. 4 - FIGURE EX4.24 shows the...Ch. 4 - FIGURE EX4.25 shows the...Ch. 4 - The earth’s radius is about 4000 miles. Kampala,...Ch. 4 - An old-fashioned single-play vinyl record rotates...Ch. 4 - As the earth mates, what is the speed of (a) a...Ch. 4 - How fast must a plane fly along the earth’s...Ch. 4 - A 3000-rn-high mountain is located on the equator....Ch. 4 - Peregrine falcons are known for their maneuvering...Ch. 4 - To withstand “g-forces” of up to 10 g’s, caused by...Ch. 4 - The radius of the earth’s very nearly circular...Ch. 4 - A speck of dust on a spinning DVD has a...Ch. 4 - Your roommate is working on his bicycle and has...Ch. 4 - I FIGURE EX4.36 shows the angular velocity graph...Ch. 4 - I FIGURE EX4.37 shows the angular acceleration...Ch. 4 - FIGURE EX4.38 shows the...Ch. 4 - A wheel initially rotating at 60 rpm experiences...Ch. 4 - A 5.0-rn-diameter merry-go-round is initially...Ch. 4 - An electric fan goes from rest to 1800 rpm in 4.0...Ch. 4 - A bicycle wheel is rotating at 50 rpm when the...Ch. 4 - Starting from rest, a DVD steadily accelerates to...Ch. 4 - A spaceship maneuvering near Planet Zeta is...Ch. 4 - equation reference goes here45. A particle moving...Ch. 4 - A projectile’s horizontal range over level ground...Ch. 4 - a. A projectile is launched with speed v0and angle...Ch. 4 - A projectile is launched from ground level at...Ch. 4 - A gray kangaroo can bound across level ground with...Ch. 4 - A ball is thrown toward a cliff of height h with a...Ch. 4 - A tennis player hits a ball 2.0 m above the...Ch. 4 - You are target shooting using a toy gun that fires...Ch. 4 - A 35 g steel ball is held by a ceiling-mounted...Ch. 4 - You are watching an archery tournament when you...Ch. 4 - You’re 6.0 m from one wall of the house seen in...Ch. 4 - Sand moves without slipping at 6.0 m/s down a...Ch. 4 - A stunt man drives a car at a speed of 20 m/s off...Ch. 4 - A javelin thrower standing at rest holds the...Ch. 4 - A rubber ball is dropped onto a ramp that is...Ch. 4 - You are asked to consult for the city’s research...Ch. 4 - Ships A and B leave port together. For the next...Ch. 4 - While driving north at 25 m/s during a rainstorm...Ch. 4 - You’ve been assigned the task of using a shaft...Ch. 4 - Prob. 64EAPCh. 4 - Prob. 65EAPCh. 4 - Astronauts use a centrifuge to simulate the...Ch. 4 - Communications satellites are placed in a circular...Ch. 4 - Prob. 68EAPCh. 4 - A high-speed drill rotating ccw at 2400 rpm comes...Ch. 4 - A turbine is spinning at 3800 rpm. Frication in...Ch. 4 - Prob. 71EAPCh. 4 - The angular velocity of a process control motor is...Ch. 4 - A Ferris wheel of radius R speeds up with angular...Ch. 4 - Prob. 74EAPCh. 4 - A painted tooth on a spinning gear has angular...Ch. 4 - A car starts from rest on a curve with radius of...Ch. 4 - Prob. 77EAPCh. 4 - In Problem 78 through 80 you are given the...Ch. 4 - Prob. 79EAPCh. 4 - In Problem 78 through 80 you are given the...Ch. 4 - In one contest at the country fair, seen in FIGURE...Ch. 4 - Prob. 82EAPCh. 4 - Prob. 83EAPCh. 4 - Prob. 84EAPCh. 4 - Prob. 85EAP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
How can the freezing of water crack boulders?
Campbell Biology in Focus (2nd Edition)
SYNTHESIZE YOUR KNOWLEDGE Watennelon snow in Antarctica is caused by a species of photosynthetic green algae th...
Campbell Biology (11th Edition)
20.29 A sample offield mice contains individuals that are, that are , and that are.
What are the frequencies o...
Genetic Analysis: An Integrated Approach (3rd Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Glycine has pK2 values of 2.34 and 9.60. At what pH does glycine exist in the forms shown?
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forward
- Describe the development of rational choice theory in sociology. Please includearrow_forwardA-E pleasearrow_forwardA 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forward
- A-E pleasearrow_forwardThree moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward5.97 Block A, with weight 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. Figure P5.97 B A S 36.9°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Vectors and 2D Motion: Crash Course Physics #4; Author: CrashCourse;https://www.youtube.com/watch?v=w3BhzYI6zXU;License: Standard YouTube License, CC-BY