College Physics (Instructor's)
11th Edition
ISBN: 9781305965317
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 14CQ
Suppose you are driving a car at a high speed. Why should you avoid slamming on your brakes when you want to stop in the shortest possible distance? (Newer cars have antilock brakes that avoid this problem.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
No chatgpt pls
4.4 A man is dragging a trunk up the
loading ramp of a mover's truck. The
ramp has a slope angle of 20.0°, and
the man pulls upward with a force F
whose direction makes an angle of 30.0°
75.0°
with the ramp (Fig. E4.4). (a) How large a force F is necessary for the
component Fx parallel to the ramp to be 90.0 N? (b) How large will the
component Fy perpendicular to the ramp be then?
Figure E4.4
30.0
20.0°
1.
*
A projectile is shot from a launcher at an angle e, with an initial velocity
magnitude v., from a point even with a tabletop. The projectile lands on the tabletop
a horizontal distance R (the "range") away from where it left the launcher. Set this
up as a formal problem, and solve for vo (i.e., determine an expression for Vo in
terms of only R, 0., and g). Your final equation will be called Equation 1.
Chapter 4 Solutions
College Physics (Instructor's)
Ch. 4.2 - Which of the following statements are true? (a) An...Ch. 4.2 - Which has greater value, a newton of gold on Earth...Ch. 4.2 - Respond to each statement, true or false: (a) No...Ch. 4.2 - A small sports car collides head-on with a massive...Ch. 4.4 - If you press a book flat against a vertical wall...Ch. 4.4 - A crate is sitting in the center of a flatbed...Ch. 4.4 - Suppose your friend is sitting on a sled and asks...Ch. 4.6 - Consider the two situations shown in Figure 4.30,...Ch. 4.6 - For the woman being pulled forward on the toboggan...Ch. 4 - A passenger sitting in the rear of a bus claims...
Ch. 4 - A space explorer is moving through space far from...Ch. 4 - (a) If gold were sold by weight, would you rather...Ch. 4 - If you push on a heavy box that is at rest, you...Ch. 4 - A ball is held in a persons hand. (a) Identify all...Ch. 4 - A weight lifter stands on a bathroom scale. (a) As...Ch. 4 - (a) What force causes an automobile to move? (b) A...Ch. 4 - If only one force acts on an object, can it be in...Ch. 4 - In the: motion picture It Happened One Night...Ch. 4 - Analyze the motion of a rock dropped in water in...Ch. 4 - Identify the action-reaction pairs in the...Ch. 4 - Draw a free-body diagram for each of the following...Ch. 4 - In a tug-of-war between two athletes, each pulls...Ch. 4 - Suppose you are driving a car at a high speed. Why...Ch. 4 - As a block slides down a frictionless incline,...Ch. 4 - A crate remains stationary after it has been...Ch. 4 - In Figure 4.4, a locomotive has broken through the...Ch. 4 - If an object is in equilibrium, which of the...Ch. 4 - A truck loaded with sand accelerates along a...Ch. 4 - A large crate of mass m is placed on the back of a...Ch. 4 - Which of the following statements are true? (a) An...Ch. 4 - A woman is standing on the Earth. In terms of...Ch. 4 - An exoplanet has twice the mass and half the...Ch. 4 - Choose the best answer. A car traveling at...Ch. 4 - The heaviest invertebrate is the giant squid,...Ch. 4 - A football punter accelerates a football from rest...Ch. 4 - A 6.0-kg object undergoes an acceleration of 2.0...Ch. 4 - One or more external forces are exerted on each...Ch. 4 - A bag of sugar weighs 5.00 lb on Earth. What would...Ch. 4 - A freight train has a mass of 1.5 107 kg. If the...Ch. 4 - Four forces act on an object, given by A = 40.0 N...Ch. 4 - Consider a solid metal sphere (S) a few...Ch. 4 - As a fish jumps vertically out of the water,...Ch. 4 - A 5.0-g bullet leaves the muzzle of a rifle with a...Ch. 4 - A boat moves through the water with two forces...Ch. 4 - Two forces are applied to a car in an effort to...Ch. 4 - A 970.-kg car starts from rest on a horizontal...Ch. 4 - An object of mass m is dropped from the roof of a...Ch. 4 - After falling from rest from a height of 30.0 m, a...Ch. 4 - The force exerted by the wind on the sails of a...Ch. 4 - A force of 30.0 N is applied in the positive...Ch. 4 - What would be the acceleration of gravity at the...Ch. 4 - Calculate the magnitude of the normal force on a...Ch. 4 - A horizontal force of 95.0 N is applied to a...Ch. 4 - A car of mass 875 kg is traveling 30.0 m/s when...Ch. 4 - A student of mass 60.0 kg, starting at rest,...Ch. 4 - A 1.00 103-N crate is being pushed across a level...Ch. 4 - A block of mass m = 5.8 kg is pulled up a = 25...Ch. 4 - A rocket takes off from Earths surface,...Ch. 4 - A man exerts a horizontal force of 125 N on a...Ch. 4 - A horse is harnessed to a sled having a mass of...Ch. 4 - A block of mass 55.0 kg rests on a slope having an...Ch. 4 - A dockworker loading crates on a ship finds that a...Ch. 4 - Suppose the coefficient of static friction between...Ch. 4 - The coefficient of static friction between the...Ch. 4 - Two identical strings making an angle of = 30.0...Ch. 4 - A 75-kg man standing on a scale in an elevator...Ch. 4 - A crate of mass m = 32 kg rides on the bed of a...Ch. 4 - (a) Find the tension in each cable supporting the...Ch. 4 - The distance between two telephone poles is 50.0...Ch. 4 - (a) An elevator of mass m moving upward has two...Ch. 4 - A certain orthodontist uses a wire brace to align...Ch. 4 - A 150-N bird feeder is supported by three cables...Ch. 4 - The leg and cast in Figure P4.40 weigh 220 N (w1)....Ch. 4 - A 276-kg glider is being pulled by a 1 950-kg jet...Ch. 4 - A crate of mass 45.0 kg is being transported on...Ch. 4 - Consider a large truck carrying a heavy load, such...Ch. 4 - A student decides to move a box of books into her...Ch. 4 - An object falling under the pull of gravity is...Ch. 4 - A 3.00-kg block starts from rest at the top of a...Ch. 4 - To meet a U.S. Postal Service requirement,...Ch. 4 - A block of mass 12.0 kg is sliding at an initial...Ch. 4 - The person in Figure P4.49 weighs 170. lb. Each...Ch. 4 - A car is traveling at 50.0 km/h on a flat highway....Ch. 4 - A 5.0-kg bucket of water is raised from a well by...Ch. 4 - A hockey puck struck by a hockey stick is given an...Ch. 4 - A setup similar to the one shown in Figure P4.53...Ch. 4 - An Atwoods machine (Fig. 4.38) consists of two...Ch. 4 - A block of mass m1 = 16.0 kg is on a frictionless...Ch. 4 - Two blocks each of mass m are fastened to the top...Ch. 4 - Two blocks of masses m and 2m are held in...Ch. 4 - The systems shown in Figure P4.58 are in...Ch. 4 - Assume the three blocks portrayed in Figure P4.59...Ch. 4 - Two packing crates of masses 10.0 kg and 5.00 kg...Ch. 4 - A 1.00 103 car is pulling a 300.-kg trailer....Ch. 4 - Two blocks of masses m1 and m2 (m1 m2) are placed...Ch. 4 - In Figure P4.63, the light, taut, unstretchable...Ch. 4 - An object with mass m1 = 5.00 kg rests on a...Ch. 4 - Objects with masses m1 = 10.0 kg and m2 = 5.00 kg...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - In Figure P4.64, m1 = 10. kg and m2 = 4.0 kg. The...Ch. 4 - A block of mass 3m is placed on a frictionless...Ch. 4 - A 15.0-lb block rests on a horizontal floor, (a)...Ch. 4 - Objects of masses m1 = 4.00 kg and m2 = 9.00 kg...Ch. 4 - Two blocks each of mass m = 3.50 kg are fastened...Ch. 4 - As a protest against the umpires calls, a baseball...Ch. 4 - Three objects are connected on a table as shown in...Ch. 4 - (a) What is the minimum force of friction required...Ch. 4 - (a) What is the resultant force exerted by the two...Ch. 4 - A woman at an airport is towing her 20.0-kg...Ch. 4 - A boy coasts down a hill on a sled, reaching a...Ch. 4 - Three objects are connected by light strings as...Ch. 4 - A box rests on the back of a truck. The...Ch. 4 - A high diver of mass 70.0 kg steps off a board...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Measuring coefficients of friction A coin is...Ch. 4 - A 2.00-kg aluminum block and a 6.00-kg copper...Ch. 4 - On an airplanes takeoff, the combined action of...Ch. 4 - Two boxes of fruit on a frictionless horizontal...Ch. 4 - A sled weighing 60.0 N is pulled horizontally...Ch. 4 - A car accelerates down a hill (Fig. P4.87), going...Ch. 4 - An inventive child wants to reach an apple in a...Ch. 4 - The parachute on a race car of weight 8 820 N...Ch. 4 - A fire helicopter carries a 620-kg bucket of water...Ch. 4 - The board sandwiched between two other boards in...Ch. 4 - A 72-kg man stands on a spring scale in an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (3rd Edition)
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
2. Why is it that the range of resting blood pressures of humans is best represented by a bell-shaped curve co...
Human Biology: Concepts and Current Issues (8th Edition)
Q2. Which statement best defines chemistry?
a. The science that studies solvents, drugs, and insecticides
b. Th...
Introductory Chemistry (6th Edition)
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, o,y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0., y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forward4.56 ... CALC An object of mass m is at rest in equilibrium at the origin. At t = 0 a new force F(t) is applied that has components Fx(t) = k₁ + k₂y Fy(t) = k3t where k₁, k2, and k3 are constants. Calculate the position (1) and veloc- ity (t) vectors as functions of time.arrow_forward4.14 ⚫ A 2.75 kg cat moves in a straight line (the x-axis). Figure E4.14 shows a graph of the x- component of this cat's velocity as a function of time. (a) Find the maximum net force on this cat. When does this force occur? (b) When is the net force on the cat equal to zero? (c) What is the net force at time 8.5 s? Figure E4.14 V₁ (m/s) 12.0 10.0 8.0 6.0 4.0 2.0 0 t(s) 2.0 4.0 6.0 8.0 10.0arrow_forward
- 4.36 ... CP An advertisement claims that a particular automobile can "stop on a dime." What net force would be necessary to stop a 850 kg automobile traveling initially at 45.0 km/h in a distance equal to the di- ameter of a dime, 1.8 cm?arrow_forward4.46 The two blocks in Fig. P4.46 are connected by a heavy uniform rope with a mass of 4.00 kg. An up- ward force of 200 N is applied as shown. (a) Draw three free-body diagrams: one for the 6.00 kg block, one for B the 4.00 kg rope, and another one for the 5.00 kg block. For each force, indicate what object exerts that force. (b) What is the acceleration of the system? (c) What is the tension at the top of the heavy rope? (d) What is the tension at the midpoint of the rope? Figure P4.46 F= 200 N 4.00 kg 6.00 kg 5.00 kgarrow_forward4.35 ⚫ Two adults and a child want to push a wheeled cart in the direc- tion marked x in Fig. P4.35 (next page). The two adults push with hori- zontal forces F and F as shown. (a) Find the magnitude and direction of the smallest force that the child should exert. Ignore the effects of friction. (b) If the child exerts the minimum force found in part (a), the cart ac- celerates at 2.0 m/s² in the +x-direction. What is the weight of the cart? Figure P4.35 F₁ = 100 N 60° 30° F2 = 140 Narrow_forward
- 4.21 ⚫ BIO World-class sprinters can accelerate out of the starting blocks with an acceleration that is nearly horizontal and has magnitude 15 m/s². How much horizontal force must a 55 kg sprinter exert on the starting blocks to produce this acceleration? Which object exerts the force that propels the sprinter: the blocks or the sprinter herself?arrow_forwardNo chatgpt pls will upvotearrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- The kinetic energy of a pendulum is greatest Question 20Select one: a. at the top of its swing. b. when its potential energy is greatest. c. at the bottom of its swing. d. when its total energy is greatest.arrow_forwardPart a-D plarrow_forwardThe figure (Figure 1) shows representations of six thermodynamic states of the same ideal gas sample. Figure 1 of 1 Part A ■Review | Constants Rank the states on the basis of the pressure of the gas sample at each state. Rank pressure from highest to lowest. To rank items as equivalent, overlap them. ▸ View Available Hint(s) highest 0 ☐ ☐ ☐ ☐ ☐ ☐ Reset Help B F A D E The correct ranking cannot be determined. Submit Previous Answers × Incorrect; Try Again; 4 attempts remaining Provide Feedback lowest Next >arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY