DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 12RQ
To determine
The meaning of solubility limit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Using the following table, draw a melting point diagram and estimate the eutectic temperature and composition:
Percent composition
Melting point range (°C)
100% A
125-126
75% A-25% B
115-120
65% A- 35% B
128-131
50% A- 50% B
135-140
100% B
151-152
Can you suggest what additional points you need to give a more accurate measure of the eutectic point?
i need the answer quickly
I need the solution of this question please please please quickly
Thanks
Chapter 4 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 4 - What kind of questions can be answered by...Ch. 4 - Prob. 2RQCh. 4 - Supplement the examples provided in the text with...Ch. 4 - Prob. 4RQCh. 4 - What three primary variables are generally...Ch. 4 - Use the pressure–temperature diagram for water...Ch. 4 - Prob. 7RQCh. 4 - What form of equilibrium phase diagram is most...Ch. 4 - What is a cooling curve?Ch. 4 - Prob. 10RQ
Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 - What types of changes occur upon cooling through a...Ch. 4 - Prob. 15RQCh. 4 - What is a tie�line? For what types of phase...Ch. 4 - What points on a tie�line are used to determine...Ch. 4 - Prob. 18RQCh. 4 - What is a cored structure? Under what conditions...Ch. 4 - What is the difference between a cored structure...Ch. 4 - Prob. 21RQCh. 4 - Prob. 22RQCh. 4 - Prob. 23RQCh. 4 - Prob. 24RQCh. 4 - For the various three�phase reactions, what does...Ch. 4 - Prob. 26RQCh. 4 - Prob. 27RQCh. 4 - Prob. 28RQCh. 4 - Prob. 29RQCh. 4 - Prob. 30RQCh. 4 - Prob. 31RQCh. 4 - Prob. 32RQCh. 4 - Prob. 33RQCh. 4 - Prob. 34RQCh. 4 - Prob. 35RQCh. 4 - Prob. 36RQCh. 4 - Prob. 37RQCh. 4 - What is carbon equivalent, and how is it computed?Ch. 4 - Prob. 39RQCh. 4 - Prob. 40RQCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Consider the manufacture of a fishhook beginning...Ch. 4 - If a stainless steel were to be used, what type of...Ch. 4 - A wide spectrum of coatings and surface treatments...Ch. 4 - Prob. 4CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 50 wt% Pb–50 wt% Mg alloy is slowly cooled from 700°C to 400°C. (a) At what temperature does the first solid phase form? (b) What is the composition of this solid phase? (c) At what temperature does the liquid solidify? (d) What is the composition of this last remaining liquid phase?arrow_forwardQuestion 4: Using the following TTT diagram for an iron-carbon alloy of eutectoid composition, specify the nature of the final microstructure (in terms of microconstituents present and approximate percentages of each) of a small specimen that has been subjected to the following time-temperature treatments. In each case assume that the specimen begins at 760°C (1400°F) and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure.arrow_forwardQuestion 4: Using the following TTT diagram for an iron-carbon alloy of eutectoid composition, specify the nature of the final microstructure (in terms of microconstituents present and approximate percentages of each) of a small specimen that has been subjected to the following time-temperature treatments. In each case assume that the specimen begins at 760°C (1400°F) and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure. (1) Cool rapidly to 700°C (1290°F), hold for 104 s, then quench to room temperature (ii) Reheat the specimen in part (1) to 700°C (1290°F) for 20 h. (iii) Cool rapidly to 400°C (750°F), hold for 20 s, then quench to room temperature (iv) Cool rapidly to 400°C (750°F), hold for 200 s, then quench to room temperature. (v) Rapidly cool to 575°C (1065°F), hold for 20 s, rapidly cool to 350°C (660°F), hold for 100 s, then quench to room temperature. (vi) Rapidly cool to 250°C (480°F), hold for 100 s, then…arrow_forward
- Use the following TTT Diagram for the following questions: 800 A 1400 -Eutectoid temperature 700 1200 600 1000 500 800 400 600 300 Mistart) 200 50% 400 M+A M(50%) M(90%) 100 200 10-1 10 102 103 10 105 Time (s) Temperature ("C) Termperature (°F)arrow_forwardIf the grain boundary energy for silver is 0.790 J/m2, (a) determine the Zener drag force applied to line of contact for a second phase particle with diameter of 600 nm. (b) Determine, to a fırst approximation, the limiting grain size of silver containing a 1 percent volume fraction of a stable precipitate. O 790 N, 40 µm O 790 N, 80 um O 1580 N, 40 um O 1580 N, 80 umarrow_forwardplease draw each question on the TTT diagramarrow_forward
- What is grain boundary and state the importance of grain boundaries.arrow_forwardA 50 wt% Ni–50 wt% Cu alloy is heated to a temperature within the a liquid-phase region. If the composition of the alpha phase is 58 wt% Ni, determine (b) the composition of the liquid phase in wt% Niarrow_forward5 During decommissioning work, in order to determine the number of radionuclides deposited in a section of iron pipe, you grind up a small section of the pipe into a fine powder to carry out a reaction at 400 0C. Preliminary analysis shows that the predominant iron species are FeO and Fe2O3 Is it safe to use an aluminum crucible for heating your sample? What about a graphite crucible? Provide a short but detailed explanation referencing Ellingham diagrams, calculating Gibbs Free Energy, as well as provide any relevant reactions.arrow_forward
- A 50 wt% Pb-50 wt% Mg alloy is slowly cooled from 700 °C (1290 °F) to 400 °C (750 °F). (a) At what temperature does the first solid phase form? (b) What is the composition of this solid phase? (c) At what temperature does the liquid solidify? (d) What is the composition of this last remaining liquid phase? Temperature (°C) 700 600 500 400 300 200 100 2 0 0 (Mg) 560°C First solid (21 wt% Pb) α 20 465°C 5 a + L Composition (at% Pb) 40 10 L a + Mg₂Pb 20 60 Composition (wt% Pb) Last liquid (67 wt% Pb) 30 Mg₂Pb 40 T T L + Mg₂Pb M 18 80 L + Mg₂Pb 70 100 B B+ Mg₂Pb T B + L D T 1200 1000 800 600 400 200 100 (Pb) Temperature (°F)arrow_forwardQ1 A/ Cu has F.C.C structure , lattice parametres of 0. 3615 nm, 83.7 kj / m³ is requried to produce avacncy, N, of 6.022 x 10 23 , K of 1.38 x10-23 j /K Determine : 1. number of atoms per m 2 .number of vacancies at 100 °Carrow_forwardPlease answer all questionsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Intro to Ceramics and Glasses — Lesson 2, Part 1; Author: Ansys Learning;https://www.youtube.com/watch?v=ArDFnBWH-8w;License: Standard Youtube License