Concept explainers
(a)
The histogram frequency distribution, cumulative percentage distribution for each set of data and average speed.
Answer to Problem 10P
Explanation of Solution
Given:
Significance level of
Formula used:
Calculation:
Before an increase in speed enforcement activities:
The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
28-30 | 29 | 4 | 116 | 13 | 13 | 139.24 |
31-33 | 32 | 5 | 160 | 17 | 30 | 42.05 |
34-36 | 35 | 12 | 420 | 40 | 70 | 0.12 |
37-39 | 38 | 6 | 228 | 20 | 90 | 57.66 |
40-42 | 41 | 3 | 123 | 10 | 100 | 111.63 |
Total | 30 | 1047 | 350.7 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
Determine the arithmetic mean speed:
After an increase in speed enforcement activities:
The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
20-22 | 21 | 6 | 126 | 20 | 20 | 253.5 |
23-25 | 24 | 8 | 192 | 27 | 47 | 98 |
26-28 | 27 | 4 | 108 | 13 | 60 | 1 |
29-31 | 30 | 3 | 90 | 10 | 70 | 18.75 |
32-34 | 33 | 5 | 165 | 17 | 87 | 151.25 |
35-37 | 36 | 4 | 144 | 13 | 100 | 289 |
Total | 30 | 825 | 811.5 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
Determine the arithmetic mean speed:
Conclusion:
The average speeds of each set of data are 34.9 and 27.5 mi/h respectively.
(b)
The histogram frequency distribution, cumulative percentage distribution for each set of data and 85th percentile speed.
Answer to Problem 10P
Explanation of Solution
Given:
Significance level of
Calculation:
Before an increase in speed enforcement activities:
The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
28-30 | 29 | 4 | 116 | 13 | 13 | 139.24 |
31-33 | 32 | 5 | 160 | 17 | 30 | 42.05 |
34-36 | 35 | 12 | 420 | 40 | 70 | 0.12 |
37-39 | 38 | 6 | 228 | 20 | 90 | 57.66 |
40-42 | 41 | 3 | 123 | 10 | 100 | 111.63 |
Total | 30 | 1047 | 350.7 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
The 85th-percentile speed is obtained from the cumulative frequency distribution curve as 36 mi/h.
After an increase in speed enforcement activities:
The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
20-22 | 21 | 6 | 126 | 20 | 20 | 253.5 |
23-25 | 24 | 8 | 192 | 27 | 47 | 98 |
26-28 | 27 | 4 | 108 | 13 | 60 | 1 |
29-31 | 30 | 3 | 90 | 10 | 70 | 18.75 |
32-34 | 33 | 5 | 165 | 17 | 87 | 151.25 |
35-37 | 36 | 4 | 144 | 13 | 100 | 289 |
Total | 30 | 825 | 811.5 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
The 85th-percentile speed is obtained from the cumulative frequency distribution curve as 31.5 mi/h.
Conclusion:
The 85th-percentile speed for each set of data are 36 and 31.5 mi/h respectively.
(c)
The histogram frequency distribution, cumulative percentage distribution for each set of data and 15th percentile speed.
Answer to Problem 10P
Explanation of Solution
Given:
Significance level of
Calculation:
Before an increase in speed enforcement activities:
The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
28-30 | 29 | 4 | 116 | 13 | 13 | 139.24 |
31-33 | 32 | 5 | 160 | 17 | 30 | 42.05 |
34-36 | 35 | 12 | 420 | 40 | 70 | 0.12 |
37-39 | 38 | 6 | 228 | 20 | 90 | 57.66 |
40-42 | 41 | 3 | 123 | 10 | 100 | 111.63 |
Total | 30 | 1047 | 350.7 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
The 15th-percentile speed is obtained from the cumulative frequency distribution curve as 28.5 mi/h.
After an increase in speed enforcement activities:
The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
20-22 | 21 | 6 | 126 | 20 | 20 | 253.5 |
23-25 | 24 | 8 | 192 | 27 | 47 | 98 |
26-28 | 27 | 4 | 108 | 13 | 60 | 1 |
29-31 | 30 | 3 | 90 | 10 | 70 | 18.75 |
32-34 | 33 | 5 | 165 | 17 | 87 | 151.25 |
35-37 | 36 | 4 | 144 | 13 | 100 | 289 |
Total | 30 | 825 | 811.5 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
The 15th-percentile speed is obtained from the cumulative frequency distribution curve as 0 mi/h.
Conclusion:
The 15th-percentile speed for each set of data are 28.5 and 0 mi/h respectively.
(d)
The histogram frequency distribution, cumulative percentage distribution for each set of data and mode.
Answer to Problem 10P
35 mi/h and 24 mi/h
Explanation of Solution
Given:
Significance level of
Calculation:
Before an increase in speed enforcement activities:
The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
28-30 | 29 | 4 | 116 | 13 | 13 | 139.24 |
31-33 | 32 | 5 | 160 | 17 | 30 | 42.05 |
34-36 | 35 | 12 | 420 | 40 | 70 | 0.12 |
37-39 | 38 | 6 | 228 | 20 | 90 | 57.66 |
40-42 | 41 | 3 | 123 | 10 | 100 | 111.63 |
Total | 30 | 1047 | 350.7 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
The mode or modal speed is obtained from the frequency histogram as 35 mi/h
After an increase in speed enforcement activities:
The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
20-22 | 21 | 6 | 126 | 20 | 20 | 253.5 |
23-25 | 24 | 8 | 192 | 27 | 47 | 98 |
26-28 | 27 | 4 | 108 | 13 | 60 | 1 |
29-31 | 30 | 3 | 90 | 10 | 70 | 18.75 |
32-34 | 33 | 5 | 165 | 17 | 87 | 151.25 |
35-37 | 36 | 4 | 144 | 13 | 100 | 289 |
Total | 30 | 825 | 811.5 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
The mode or modal speed is obtained from the frequency histogram as 24 mi/h.
Conclusion:
The mode for each set of data are 35 and 24 mi/h respectively.
(e)
The histogram frequency distribution, cumulative percentage distribution for each set of data and median.
Answer to Problem 10P
32.5 and 23.5 mi/h
Explanation of Solution
Given:
Significance level of
Calculation:
Before an increase in speed enforcement activities:
The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
28-30 | 29 | 4 | 116 | 13 | 13 | 139.24 |
31-33 | 32 | 5 | 160 | 17 | 30 | 42.05 |
34-36 | 35 | 12 | 420 | 40 | 70 | 0.12 |
37-39 | 38 | 6 | 228 | 20 | 90 | 57.66 |
40-42 | 41 | 3 | 123 | 10 | 100 | 111.63 |
Total | 30 | 1047 | 350.7 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
The median speed is obtained from the cumulative frequency distribution curve as 32.5 mi/h which is the 50th percentile speed.
After an increase in speed enforcement activities:
The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
20-22 | 21 | 6 | 126 | 20 | 20 | 253.5 |
23-25 | 24 | 8 | 192 | 27 | 47 | 98 |
26-28 | 27 | 4 | 108 | 13 | 60 | 1 |
29-31 | 30 | 3 | 90 | 10 | 70 | 18.75 |
32-34 | 33 | 5 | 165 | 17 | 87 | 151.25 |
35-37 | 36 | 4 | 144 | 13 | 100 | 289 |
Total | 30 | 825 | 811.5 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
The median speed is obtained from the cumulative frequency distribution curve as 23.5 mi/h which is the 50th percentile speed.
Conclusion:
The median speed for each set of data are 32.5 and 23.5 mi/h respectively.
(f)
The histogram frequency distribution, cumulative percentage distribution for each set of data and pace.
Answer to Problem 10P
32 to 39 mi/h and 27 to 36 mi/h
Explanation of Solution
Given:
Significance level of
Calculation:
Before an increase in speed enforcement activities:
The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
28-30 | 29 | 4 | 116 | 13 | 13 | 139.24 |
31-33 | 32 | 5 | 160 | 17 | 30 | 42.05 |
34-36 | 35 | 12 | 420 | 40 | 70 | 0.12 |
37-39 | 38 | 6 | 228 | 20 | 90 | 57.66 |
40-42 | 41 | 3 | 123 | 10 | 100 | 111.63 |
Total | 30 | 1047 | 350.7 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
Below figure shows the frequency distribution curve for the data given. In this case, a curve showing percentage of observations against speed is drawn by plotting values from column 5 of above Table against the corresponding values in column 2. The total area under this curve is one or 100 percent.
The pace is obtained from the frequency distribution curve above as 32 to 39 mi/h.
After an increase in speed enforcement activities:
The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Speed class (mi/h) | Class mid-value | Class frequency, | Percentage of class frequency | Cumulative percentage of class frequency | ||
20-22 | 21 | 6 | 126 | 20 | 20 | 253.5 |
23-25 | 24 | 8 | 192 | 27 | 47 | 98 |
26-28 | 27 | 4 | 108 | 13 | 60 | 1 |
29-31 | 30 | 3 | 90 | 10 | 70 | 18.75 |
32-34 | 33 | 5 | 165 | 17 | 87 | 151.25 |
35-37 | 36 | 4 | 144 | 13 | 100 | 289 |
Total | 30 | 825 | 811.5 |
Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.
Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.
Below figure shows the frequency distribution curve for the data given. In this case, a curve showing percentage of observations against speed is drawn by plotting values from column 5 of above Table against the corresponding values in column 2. The total area under this curve is one or 100 percent.
The pace is obtained from the frequency distribution curve drawn above as 27 to 36 mi/h.
Conclusion:
The pace for each set of data are 32 to 39 mi/h and 27 to 36 mi/h respectively.
Want to see more full solutions like this?
Chapter 4 Solutions
Traffic and Highway Engineering
- subjectarrow_forwardExample 5.2: Design Example of a Square Foundation for a Colum Figure A.3a shows a square column foundation with the followin conditions: Live load=L=675 kN Dead load D= 1125 kN Allowable gross soil-bearing capacity 145 kN/m² Column size-0.5 m x 0.5 m -20.68 MN/m² 1,413.7 MN/m² Let it be required to design the column foundation. 1.25m-D L-675 AN D-1125 AN (a) Column section- 05 m x 0.5marrow_forwardExample 5.3: Design Example of a Rectangular Foundation for Column This section describes the design of a rectangular foundation to support a column having dimensions of 0.4 m x 0.4 m in cross section. Other details are as follows: Dead load D= 290 kN Live load L= 110 kN Depth from the ground surface to the top of the foundation = 1.2 m Allowable gross soil-bearing capacity = 120 kN/m² Maximum width of foundation = B = 1.5 m f, = 413.7 MN/m² f=20.68 MN/m² Unit weight of soil = y = 17.27 kN/m³ Unit weight of concrete = y₁ = 22.97 kN/m³ General Considerations For this design, let us assume a foundation thickness of 0.45 m (Figure A.4a). The weight of foundation/m² = 0.45 y = (0.45) (22.97) = 10.34 kN/m², and the weight of soil above the foundation/m² = (1.2)y = (1.2) (17.27) = 20.72 kN/m² Hence, the net allowable soil- bearing capacity Iqata] =120-10.34-20.72 = 88.94 kN/m² The required area of the foundation = (D+L)/4(all) = (290 + 110)/88.94 = 4.5 m². Hence, the length of the foundation…arrow_forward
- Problem 1 You are in the process of designing a water supply system for the whole lligan City, and the design life of your system is to end in the year 2070. The population in the town has been measured every 10 years since 1980 by the Philippine Statistics Authority, and the reported populations are tabulated below. Estimate the population in the town using (a) arithmetic growth projection, (b) geometric growth projection (exponential formula), (c) declining growth projection (assuming a saturation concentration of 480,000 people), and (d) logistic curve projection. Year Population 1980 167,358 1990 226,568 2000 285,061 2010 322,821 2020 342,618arrow_forwardA frame is loaded by a force Q = 280 N and supported by pins at points B and C as shown below. The distances are given as a = 0.4 m, b = 0.8 m, c = 0.6 m, d = 2.6 m, and e = 1.5 m. b C с d a A B Q D e Determine the reactions at joints B and C. Report all answers in units of N with 2 decimal places of precision. Positive signs indicate that a force component acts in the positive axis direction (i.e. up or right), while a negative sign should be used to indicate a force component acting in a negative axis direction (i.e. down or left). The x-component of the reaction force at joint B, Bx = NⓇ The y-component of the reaction force at joint B, By = NⓇ NⓇ The x-component of the reaction force at joint C, Cx = The y-component of the reaction force at joint C, C₁ = N Numberarrow_forwardD Ø A vertical pole supports a horizontal cable CD and is supported by a ball-and-socket joint at A as shown in the figure below. Cable CD is parallel to the x-z plane (which implies that a vector from C to D has no y-component) and is oriented at an angle = 20° from the x-y plane. The distances are given as h = 10 m, b = 6 m, a = 9 m, and d = 4 m. y a b B The magnitude of the tension force in cable BE, TBE = KN ® F® Determine the following forces for this system if there is a 15 kN tension carried in cable CD. Report all answers in units of kN with 1 decimal place of precision. For the components of the reaction at A, be sure to use a positive or negative sign to indicate the direction of the force (negative signs if the force acts in the negative axial direction). The magnitude of the tension force in cable BF, TBF = KN The x-component of the reaction at joint A, Ax The y-component of the reaction at joint A, A, ®®® The z-component of the reaction at joint A, Az = = KN = KN KNarrow_forward
- (10 points) Problem 4. Suppose only through traffic is allowed on an intersection approach, and traffic arrive at a constant rate of 400 veh/h. Their effective green time is set to 15 seconds. Cycle length is 60 seconds. Estimate the average delay for that approach. Use a saturation flow rate of 1750 veh/h; D/D/1 queuing. Centenniam ad) of gy dov yasm wof ni emilarrow_forwardA vertical pole supports a horizontal cable CD and is supported by a ball-and-socket joint at A as shown in the figure below. Cable CD is parallel to the x-z plane (which implies that a vector from C to D has no y-component) and is oriented at an angle = 20° from the x-y plane. The distances are given as h = 10 m, b = 6 m, a = 9 m, and d = 4 m. D C a B Determine the following forces for this system if there is a 15 kN tension carried in cable CD. Report all answers in units of kN with 1 decimal place of precision. For the components of the reaction at A, be sure to use a positive or negative sign to indicate the direction of the force (negative signs if the force acts in the negative axial direction). The magnitude of the tension force in cable BE, TBE = KN ☑ The magnitude of the tension force in cable BF, TBF = KN The x-component of the reaction at joint A, Ax = ☑ KN The y-component of the reaction at joint A, A, = KN The z-component of the reaction at joint A, Az = KN ☑arrow_forwardA vertical pole supports a horizontal cable CD and is supported by a ball-and-socket joint at A as shown in the figure below. Cable CD is parallel to the x-z plane (which implies that a vector from C to D has no y-component) and is oriented at an angle : = 20° from the x-y plane. The distances are given as h = 10 m, b = 6 m, a = 9 m, and d = 4 m. D C a B x Determine the following forces for this system if there is a 15 kN tension carried in cable CD. Report all answers in units of kN with 1 decimal place of precision. For the components of the reaction at A, be sure to use a positive or negative sign to indicate the direction of the force (negative signs if the force acts in the negative axial direction). The magnitude of the tension force in cable BE, TBE = 4.1 KN The magnitude of the tension force in cable BF, TBF = 41.1 KN The x-component of the reaction at joint A, Ax = 309.C KN ®®®® F The y-component of the reaction at joint A, Ay = -216. KN The z-component of the reaction at…arrow_forward
- A small barrel weighing 400 N is lifted by a pair of tongs as shown. Knowing that h = 200 mm, L₁ = 400 mm, L2 = 120 mm and L3 = 200 mm, determine the magnitude of the forces exerted on member ABD of this machine structure. C L2 A P L1 L3 B D Report your answers in units of N with 2 decimal places of precision. N. The magnitude of the force acting at joint B = The magnitude of the force acting at joint D = N.arrow_forwardA frame is loaded by a force Q = 280 N and supported by pins at points B and C as shown below. The distances are given as a = 0.4 m, b = 0.8 m, c = 0.6 m, d = 2.6 m, and e = 1.5 m. b C C d 11041 A B Q C D e Determine the reactions at joints B and C. Report all answers in units of N with 2 decimal places of precision. Positive signs indicate that a force component acts in the positive axis direction (i.e. up or right), while a negative sign should be used to indicate a force component acting in a negative axis direction (i.e. down or left). The x-component of the reaction force at joint B, Bx = N The y-component of the reaction force at joint B, By = N The x-component of the reaction force at joint C, Cx = N The y-component of the reaction force at joint C, Cy == Narrow_forwardI need help drawing the digram.arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning