Traffic and Highway Engineering
Traffic and Highway Engineering
5th Edition
ISBN: 9781305156241
Author: Garber, Nicholas J.
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 10P
To determine

(a)

The histogram frequency distribution, cumulative percentage distribution for each set of data and average speed.

Expert Solution
Check Mark

Answer to Problem 10P

u¯1=34.9mi/h, u¯2=27.5mi/h

Explanation of Solution

Given:

Significance level of α=0.05

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  1Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  2

Formula used:

u¯=fiuifi

u¯ is arithmetic mean

fi is number of observations in each speed group

ui is mid-value for the ith speed group

Calculation:

Before an increase in speed enforcement activities:

The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
28-302941161313139.24
31-33325160173042.05
34-36351242040700.12
37-39386228209057.66
40-4241312310100111.63
Total301047350.7

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  3

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  4

Determine the arithmetic mean speed:

u¯= f i u i f i fi=30fiui=1047u¯1=104730=34.9mi/h

After an increase in speed enforcement activities:

The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
20-222161262020253.5
23-25248192274798
26-2827410813601
29-3130390107018.75
32-343351651787151.25
35-3736414413100289
Total30825811.5

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  5

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  6

Determine the arithmetic mean speed:

u¯= f i u i f i fi=30fiui=825u¯2=82530=27.5mi/h

Conclusion:

The average speeds of each set of data are 34.9 and 27.5 mi/h respectively.

To determine

(b)

The histogram frequency distribution, cumulative percentage distribution for each set of data and 85th percentile speed.

Expert Solution
Check Mark

Answer to Problem 10P

v851=36mi/h, v852=31.5mi/h

Explanation of Solution

Given:

Significance level of α=0.05

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  7Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  8

Calculation:

Before an increase in speed enforcement activities:

The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
28-302941161313139.24
31-33325160173042.05
34-36351242040700.12
37-39386228209057.66
40-4241312310100111.63
Total301047350.7

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  9

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  10

The 85th-percentile speed is obtained from the cumulative frequency distribution curve as 36 mi/h.

After an increase in speed enforcement activities:

The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
20-222161262020253.5
23-25248192274798
26-2827410813601
29-3130390107018.75
32-343351651787151.25
35-3736414413100289
Total30825811.5

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  11

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  12

The 85th-percentile speed is obtained from the cumulative frequency distribution curve as 31.5 mi/h.

Conclusion:

The 85th-percentile speed for each set of data are 36 and 31.5 mi/h respectively.

To determine

(c)

The histogram frequency distribution, cumulative percentage distribution for each set of data and 15th percentile speed.

Expert Solution
Check Mark

Answer to Problem 10P

v151=28.5mi/h, v152=0mi/h

Explanation of Solution

Given:

Significance level of α=0.05

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  13Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  14

Calculation:

Before an increase in speed enforcement activities:

The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
28-302941161313139.24
31-33325160173042.05
34-36351242040700.12
37-39386228209057.66
40-4241312310100111.63
Total301047350.7

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  15

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  16

The 15th-percentile speed is obtained from the cumulative frequency distribution curve as 28.5 mi/h.

After an increase in speed enforcement activities:

The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
20-222161262020253.5
23-25248192274798
26-2827410813601
29-3130390107018.75
32-343351651787151.25
35-3736414413100289
Total30825811.5

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  17

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  18

The 15th-percentile speed is obtained from the cumulative frequency distribution curve as 0 mi/h.

Conclusion:

The 15th-percentile speed for each set of data are 28.5 and 0 mi/h respectively.

To determine

(d)

The histogram frequency distribution, cumulative percentage distribution for each set of data and mode.

Expert Solution
Check Mark

Answer to Problem 10P

35 mi/h and 24 mi/h

Explanation of Solution

Given:

Significance level of α=0.05

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  19Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  20

Calculation:

Before an increase in speed enforcement activities:

The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
28-302941161313139.24
31-33325160173042.05
34-36351242040700.12
37-39386228209057.66
40-4241312310100111.63
Total301047350.7

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  21

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  22

The mode or modal speed is obtained from the frequency histogram as 35 mi/h

After an increase in speed enforcement activities:

The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
20-222161262020253.5
23-25248192274798
26-2827410813601
29-3130390107018.75
32-343351651787151.25
35-3736414413100289
Total30825811.5

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  23

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  24

The mode or modal speed is obtained from the frequency histogram as 24 mi/h.

Conclusion:

The mode for each set of data are 35 and 24 mi/h respectively.

To determine

(e)

The histogram frequency distribution, cumulative percentage distribution for each set of data and median.

Expert Solution
Check Mark

Answer to Problem 10P

32.5 and 23.5 mi/h

Explanation of Solution

Given:

Significance level of α=0.05

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  25Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  26

Calculation:

Before an increase in speed enforcement activities:

The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
28-302941161313139.24
31-33325160173042.05
34-36351242040700.12
37-39386228209057.66
40-4241312310100111.63
Total301047350.7

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  27

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  28

The median speed is obtained from the cumulative frequency distribution curve as 32.5 mi/h which is the 50th percentile speed.

After an increase in speed enforcement activities:

The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
20-222161262020253.5
23-25248192274798
26-2827410813601
29-3130390107018.75
32-343351651787151.25
35-3736414413100289
Total30825811.5

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  29

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  30

The median speed is obtained from the cumulative frequency distribution curve as 23.5 mi/h which is the 50th percentile speed.

Conclusion:

The median speed for each set of data are 32.5 and 23.5 mi/h respectively.

To determine

(f)

The histogram frequency distribution, cumulative percentage distribution for each set of data and pace.

Expert Solution
Check Mark

Answer to Problem 10P

32 to 39 mi/h and 27 to 36 mi/h

Explanation of Solution

Given:

Significance level of α=0.05

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  31Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  32

Calculation:

Before an increase in speed enforcement activities:

The speed ranges from 28 to 40 mi/h giving a speed range of 12. For five classes, the range per class is 2.4 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
28-302941161313139.24
31-33325160173042.05
34-36351242040700.12
37-39386228209057.66
40-4241312310100111.63
Total301047350.7

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  33

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  34

Below figure shows the frequency distribution curve for the data given. In this case, a curve showing percentage of observations against speed is drawn by plotting values from column 5 of above Table against the corresponding values in column 2. The total area under this curve is one or 100 percent.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  35

The pace is obtained from the frequency distribution curve above as 32 to 39 mi/h.

After an increase in speed enforcement activities:

The speed ranges from 20 to 37 mi/h giving a speed range of 17. For six classes, the range per class is 2.83 mi/h. A frequency distribution table can then be prepared, as shown below in which the speed classes are listed in column 1 and the mid-values are in column 2. The number of observations for each class is listed in column 3 and the cumulative percentages of all observations are listed in column 6.

1234567
Speed class (mi/h)Class mid-value
ui
Class frequency,
fi
fiuiPercentage of class frequencyCumulative percentage of class frequencyfi(uiu¯)2
20-222161262020253.5
23-25248192274798
26-2827410813601
29-3130390107018.75
32-343351651787151.25
35-3736414413100289
Total30825811.5

Below Figure shows the frequency histogram for the data shown in above Table. The values in columns 2 and 3 of Table are used to draw the frequency histogram, where the abscissa represents the speeds and the ordinate the observed frequency in each class.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  36

Below Figure shows the cumulative frequency distribution curve for the data given. In this case, the cumulative percentages in column 6 of above Table are plotted against the upper limit of each corresponding speed class. This curve gives the percentage of vehicles that are traveling at or below a given speed.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  37

Below figure shows the frequency distribution curve for the data given. In this case, a curve showing percentage of observations against speed is drawn by plotting values from column 5 of above Table against the corresponding values in column 2. The total area under this curve is one or 100 percent.

  Traffic and Highway Engineering, Chapter 4, Problem 10P , additional homework tip  38

The pace is obtained from the frequency distribution curve drawn above as 27 to 36 mi/h.

Conclusion:

The pace for each set of data are 32 to 39 mi/h and 27 to 36 mi/h respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
subject
In one of the construction projects, a bulldozer is used for a weekly rent of $150, with a work rate of 10 hours per day, 50 minutes per hour, and 6 days per week. If you know that the dimensions of the bulldozer blade are 3 lengths and 1 m height, the slope of the pushed soil is (1:1), its speed when loaded is 45 m/min and when returning is 80 m/min, and the time for loading, unloading, and changing is 0.35 minutes, the transported soil is sandy, weighing 1650 kg/m3 by Bank volume and 1300 kg/m3 by loose volume, the transport distance is 300 m. If you know that using a tractor shovel costs $0.5 per m3, ma a decision about choosing the economical equipment to use in the project.
/ An irrigation project requires digging and paving an irrigation canal with alength of (30 km) and a semi-circular section with a diameter of (8 m). The work mustmbe completed within one year, and in the event of delay, a fine delay of $200/day. You have two options for work: 1st Option: using standard equipment (excavators, graders and hand labor) had a cost of $10/m3, the job will be finish without delay. 2nd Option: Use a channel trimmer machine with the following specifications: Purchase price ($70,000), it can be sold after its economic life of (5 years) for ($30,000), its speed (10m/hr), engine diesel with (250 hp) and its work 48 minutes/hr, capacity of crankcase is (50 liters), the number of hours between changing the oil (100 hr), the maintenance cost is (80%) of its depreciation, the price of one liter of fuel ($0.5/liter) and of oil ($1/liter), the operators' wages ($15,000/year), annual operating hours (2000 hr), and the owner must pay taxes of 10% of the average value of…
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning