
Concept explainers
(a)
Interpretation:
The configuration of each of the asymmetric centers in the given compound is to be determined.
Concept introduction:
Asymmetric center is a stereocenter which arises to a compound if any atom is bonded to four different groups.
Stereoisomers are named by following Cahn-Ingold-Prelog system, in which R or S letter is used to differentiate between enantiomers.
According to Cahn-Ingold-Prelog system,
The group attached to asymmetric center should be ranked based on the
Check the direction of arrow drawn in the direction of decreasing priority. If the arrow points clockwise direction, then the compound has R configuration. If the arrow points counterclockwise direction, then the compound has S configuration. If the group with lowest priority is not bonded by a hatched wedge, then interchange this group (lowest priority) by group bonded to hatched wedge and draw the arrow in priority order but the configuration is assigned as just reverse.
(b)
Interpretation:
The configuration of each of the asymmetric centers in the given compound is to be determined.
Concept introduction:
Asymmetric center is a stereo center which arises to a compound if any atom is bonded to four different groups.
Stereoisomers are named by following Cahn-Ingold-Prelog system, in which R or S letter is used to differentiate between enantiomers.
According to Cahn-Ingold-Prelog system,
The group attached to asymmetric center should be ranked based on the atomic number of atom which directly connected to asymmetric center. The higher the atomic number of atom, higher the priority. If there is tie, then consider the next atoms attached to the connected atom and so on.
For Fischer projection formula: Check the direction of arrow drawn in the direction of decreasing priority. If the arrow points clockwise direction, then the compound has R configuration. If the arrow points counterclockwise direction, then the compound has S configuration. If the group with lowest priority is bonded in horizontal line, then the configuration is assigned as just reverse.
(c)
Interpretation:
The configuration of each of the asymmetric centers in the given compound is to be determined.
Concept introduction:
Asymmetric center is a stereocenter which arises to a compound if any atom is bonded to four different groups.
Stereoisomers are named by following Cahn-Ingold-Prelog system, in which R or S letter is used to differentiate between enantiomers.
According to Cahn-Ingold-Prelog system,
The group attached to asymmetric center should be ranked based on the atomic number of atom which directly connected to asymmetric center. The higher the atomic number of atom, higher the priority. If there is tie, then consider the next atoms attached to the connected atom and so on.
For Fischer projection formula: Check the direction of arrow drawn in the direction of decreasing priority. If the arrow points clockwise direction, then the compound has R configuration. If the arrow points counterclockwise direction, then the compound has S configuration. If the group with lowest priority is bonded in horizontal line, then the configuration is assigned as just reverse.
(d)
Interpretation:
The configuration of each of the asymmetric centers in the given compound is to be determined.
Concept introduction:
Asymmetric center is a stereocenter which arises to a compound if any atom is bonded to four different groups.
Assigning of configuration for carbohydrates, the configuration is R if –OH group is on the right and the configuration is S if the –OH is group in on left side.
(e)
Interpretation:
The configuration of each of the asymmetric centers in the given compound is to be determined.
Concept introduction:
Asymmetric center is a stereocenter which arises to a compound if any atom is bonded to four different groups.
Stereoisomers are named by following Cahn-Ingold-Prelog system, in which R or S letter is used to differentiate between enantiomers.
According to Cahn-Ingold-Prelog system,
The group attached to asymmetric center should be ranked based on the atomic number of atom which directly connected to asymmetric center. The higher the atomic number of atom, higher the priority. If there is tie, then consider the next atoms attached to the connected atom and so on.
For Fischer projection formula: Check the direction of arrow drawn in the direction of decreasing priority. If the arrow points clockwise direction, then the compound has R configuration. If the arrow points counterclockwise direction, then the compound has S configuration. If the group with lowest priority is bonded in horizontal line, then the configuration is assigned as just reverse.
Conversion of sawhorse projection to Fischer projection,
The groups on the front side carbon of sawhorse projection - The groups on the bottom side carbon of Fischer projection. And the groups on the back side carbon of sawhorse projection - The groups on the topside carbon of Fischer projection
The groups on the vertical line of sawhorse projection are the groups on the vertical line of Fischer projection.
The groups on the left side of sawhorse projection are the groups on the left side of horizontal line of Fischer projection.
The groups on the right side of sawhorse projection are the groups on the right side of horizontal line of Fischer projection.
(f)
Interpretation:
The configuration of each of the asymmetric centers in the given compound is to be determined.
Concept introduction:
Asymmetric center is a stereocenter which arises to a compound if any atom is bonded to four different groups.
Stereoisomers are named by following Cahn-Ingold-Prelog system, in which R or S letter is used to differentiate between enantiomers.
According to Cahn-Ingold-Prelog system,
The group attached to asymmetric center should be ranked based on the atomic number of atom which directly connected to asymmetric center. The higher the atomic number of atom, higher the priority. If there is tie, then consider the next atoms attached to the connected atom and so on.
Check the direction of arrow drawn in the direction of decreasing priority. If the arrow points clockwise direction, then the compound has R configuration. If the arrow points counterclockwise direction, then the compound has S configuration. If the group with lowest priority is not bonded by a hatched wedge, then interchange this group (lowest priority) by group bonded to hatched wedge and draw the arrow in priority order but the configuration is assigned as just reverse.
Newman projection: Newman projection of molecule is one type of representations for the
From the angle of observer the front carbon is proximal and second carbon is distal.
In wedge-dash line representation wedge is coming out of the plane and going behind the plane, the wedge and the dash of front carbon in Newman projection are pointing up and the wedge and the dash of back carbon in Newman projection are pointing down.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
Student's Study Guide and Solutions Manual for Organic Chemistry
- Name an interesting derivative of barbituric acid, describing its structure.arrow_forwardBriefly describe the synthesis mechanism of barbituric acid from the condensation of urea with a β-diketone.arrow_forwardGiven the hydrazones indicated, draw the structures of the enamines that can be formed. Indicate the most stable enamine (explain). C6H5 C6H5 H C6H5 Harrow_forward
- 4. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn.arrow_forwardIndicate the importance of the indole ring. Find a representative example and list 5 structures.arrow_forwardΌΗ 1) V2 CO 3 or Nalt In منهarrow_forward
- 6. The equilibrium constant for the reaction 2 HBr (g) → H2(g) + Br2(g) Can be expressed by the empirical formula 11790 K In K-6.375 + 0.6415 In(T K-¹) - T Use this formula to determine A,H as a function of temperature. Calculate A,-H at 25 °C and at 100 °C.arrow_forward3. Nitrosyl chloride, NOCI, decomposes according to 2 NOCI (g) → 2 NO(g) + Cl2(g) Assuming that we start with no moles of NOCl (g) and no NO(g) or Cl2(g), derive an expression for Kp in terms of the equilibrium value of the extent of reaction, Seq, and the pressure, P. Given that K₂ = 2.00 × 10-4, calculate Seq/ of 29/no when P = 0.080 bar. What is the new value по ƒª/ at equilibrium when P = 0.160 bar? Is this result in accord with Le Châtelier's Principle?arrow_forwardConsider the following chemical equilibrium: 2SO2(g) + O2(g) = 2SO3(g) • Write the equilibrium constant expression for this reaction. Now compare it to the equilibrium constant expression for the related reaction: • . 1 SO2(g) + O2(g) = SO3(g) 2 How do these two equilibrium expressions differ? What important principle about the dependence of equilibrium constants on the stoichiometry of a reaction can you learn from this comparison?arrow_forward
- Given Kp for 2 reactions. Find the Kp for the following reaction: BrCl(g)+ 1/2 I2(g) ->IBr(g) + 1/2 Cl2(g)arrow_forwardFor a certain gas-phase reaction at constant pressure, the equilibrium constant Kp is observed to double when the temperature increases from 300 K to 400 K. Calculate the enthalpy change of the reaction, Ah, using this information.arrow_forwardHydrogen bonding in water plays a key role in its physical properties. Assume that the energy required to break a hydrogen bond is approximately 8 kJ/mol. Consider a simplified two-state model where a "formed" hydrogen bond is in the ground state and a "broken" bond is in the excited state. Using this model: • Calculate the fraction of broken hydrogen bonds at T = 300 K, and also at T = 273 K and T = 373 K. • At what temperature would approximately 50% of the hydrogen bonds be broken? • What does your result imply about the accuracy or limitations of the two-state model in describing hydrogen bonding in water? Finally, applying your understanding: • Would you expect it to be easier or harder to vaporize water at higher temperatures? Why? If you were to hang wet laundry outside, would it dry more quickly on a warm summer day or on a cold winter day, assuming humidity is constant?arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningMacroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColeChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning



