Fluid Mechanics Fundamentals And Applications
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 103P
To determine

The seven streak lines generated from a dye rake that introduce dye streaks at x=0and y=0.2,0.4,0.6,0.8,1.0,1.2and 1.4mm.

Expert Solution & Answer
Check Mark

Answer to Problem 103P

The seven streak lines generated from the dye rake are:

x0.2=0.4931m

x0.4=0.8453m

x0.6=1.0566m

x0.8=1.1271m

x1.0=1.0566m

x1.2=0.8453m

x1.4=0.4931m

Explanation of Solution

Write the expression for the two dimensional Poiseuille flow.

u=12μdPdx(y2hy).

Here, the distance between the plates is h, the pressure gradient is dPdxand the viscosity of the fluid is μ.

Write the expression for the streak line generation equation.

x=udt

Substitute 12μdPdx(y2hy)for u in the streak line generation equation.

x=tot12μdPdx(y2hy)dt=12μdPdx(y2hy)[t]t1t2=12μdPdx(y2hy)[t2t1]...... (I)

Conclusion:

Substitute 0 for t1, 10 for t2, 230N/m3for dPdx, 6.53×104kg/msfor μand 1.6×103mfor hin Equation (I).

x=[12×6.53×104kg/ms×(230N/m3)(y2(1.6×103m)y)(10s0s)]=[12×6.53×104kg/ms×(230kgm/s2m3)(y2(1.6×103m)y)10s]=[12×6.53×104kg/ms×(230kg/m2.s2)(y2(1.6×103m)y)10s]..... (II)

Substitute y=0.2×103min Equation (II).

x1=[12×6.53×104kg/ms(230kg/m2s2)×((0.2×103m)2(1.6×103m)0.2×103m)10s]=(765.6ms/kg)×(230kg/m2s2)×(0.28×106m2)10s=0.4931m

Substitute y=0.4×103min Equation (II).

x2=[12×6.53×104kg/ms(230kg/m2s2)×((0.4×103m)2(1.6×103m)0.4×103m)10]=(765.6ms/kg)×(230kg/m2s2)×(4.8×105m2s)=0.8453m

Substitute y=0.6×103min Equation (II).

x3=[12×6.53×104kg/ms(230kg/m2s2)×((0.6×103m)2(1.6×103m)0.6×103m)10s]=(765.6ms/kg)×(230kg/m2s2)×(0.0077m2)10s=1.0566m

Substitute the values of yin Equation (II) and construct a table for the values of x.

    yz

      xz=12×6.53×104kg/ms(230N/m3)(y2(1.6×103m)y)10

    y0.2=0.2×103mx0.2=0.4931m
    y0.4=0.4×103mx0.4=0.8453m
    y0.6=0.6×103m

      x0.6=1.0566m

    y0.8=0.8×103mx0.8=1.1271m
    y1.0=1.0×103m

      x1.0=1.0566m

    y1.2=1.2×103mx1.2=0.8453m
    y1.4=1.4×103mx1.4=0.4931m

Table-(1)

Plot the values of xand yfrom Table-(1) to obtain the streak lines generated from the dye rake.

Fluid Mechanics Fundamentals And Applications, Chapter 4, Problem 103P

Figure-(1)

The figure (1) represents the graph generated from a dye rake.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The gears shown in the figure have a diametral pitch of 2 teeth per inch and a 20° pressure angle. The pinion rotates at 1800 rev/min clockwise and transmits 200 hp through the idler pair to gear 5 on shaft c. What forces do gears 3 and 4 transmit to the idler shaft? TS I y 18T 32T This a 12 x 18T C 48T 5
Question 1. Draw 3 teeth for the following pinion and gear respectively. The teeth should be drawn near the pressure line so that the teeth from the pinion should mesh those of the gear. Drawing scale (1:1). Either a precise hand drawing or CAD drawing is acceptable. Draw all the trajectories of the involute lines and the circles. Specification: 18tooth pinion and 30tooth gear. Diameter pitch=P=6 teeth /inch. Pressure angle:20°, 1/P for addendum (a) and 1.25/P for dedendum (b). For fillet, c=b-a.
5. The figure shows a gear train. There is no friction at the bearings except for the gear tooth forces. The material of the milled gears is steel having a Brinell hardness of 170. The input shaft speed (n2) is 800 rpm. The face width and the contact angle for all gears are 1 in and 20° respectively. In this gear set, the endurance limit (Se) is 15 kpsi and nd (design factor) is 2. (a) Find the revolution speed of gear 5. (b) Determine whether each gear satisfies the design factor of 2.0 for bending fatigue. (c) Determine whether each gear satisfies the design factor of 2.0 for surface fatigue (contact stress). (d) According to the computation results of the questions (b) and (c), explain the possible failure mechanisms for each gear. N4=28 800rpm N₁=43 N5=34 N₂=14 P(diameteral pitch)=8 for all gears Coupled to 2.5hp motor

Chapter 4 Solutions

Fluid Mechanics Fundamentals And Applications

Ch. 4 - A tiny neutrally buoyant electronic pressure probe...Ch. 4 - Define a steady flow field in the Eulerian...Ch. 4 - List at least three oiler names for the material...Ch. 4 - A weather balloon is hunched into the atmosphere...Ch. 4 - A Pilot-stalk probe can often be seen protruding...Ch. 4 - Is the Eulerian method of fluid flow analysis more...Ch. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Prob. 19PCh. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - The velocity field for a flow is given by...Ch. 4 - Consider steady flow of air through the diffuser...Ch. 4 - For the velocity field of Prob. 422, calculate the...Ch. 4 - A steady, incompressible, two-dimensional (in the...Ch. 4 - For the velocity field of Prob. 4-6, calculate the...Ch. 4 - Prob. 26CPCh. 4 - Prob. 27CPCh. 4 - What is the definition of a streamline? What do...Ch. 4 - Prob. 29CPCh. 4 - Consider the visualization of flow over a 15°...Ch. 4 - Consider the visualization of ground vortex flow...Ch. 4 - Consider the visualization of flow over a sphere...Ch. 4 - What is the definition of a timeline? How can...Ch. 4 - Consider a cross-sectional slice through an array...Ch. 4 - Prob. 35PCh. 4 - The velocity field of a flow is described by...Ch. 4 - Consider the following steady, incompressible,...Ch. 4 - Consider the steady, incompressible,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - The velocity held for a line vartex in the r...Ch. 4 - The velocity field for a line some in the r plane...Ch. 4 - A very small circular cylinder of radius Rtis...Ch. 4 - Consider the same two concentric cylinders of...Ch. 4 - Conversing duct flow is modeled by the steady,...Ch. 4 - Prob. 48CPCh. 4 - Name and briefly describe the four fundamental...Ch. 4 - Converging duct flow (Fig. P4—16) is modeled by...Ch. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Using the results of Prob. 4—57 and the...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - For the velocity field of Prob. 4—60, what...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Prob. 65PCh. 4 - Consider the steady, incompressible,...Ch. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - A cylindrical lank of water rotates in solid-body...Ch. 4 - Prob. 74PCh. 4 - A cylindrical tank of radius rrim= 0.354 m rotates...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Consider the following steady, three-dimensional...Ch. 4 - Prob. 79PCh. 4 - For the Couette flow of Fig. P4—79, calculate the...Ch. 4 - Combine your results from Prob. 4—80 to form the...Ch. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Prob. 88CPCh. 4 - Briefly explain the purpose of the Reynolds...Ch. 4 - True or false: For each statement, choose whether...Ch. 4 - Consider the integral ddtt2tx2. Solve it two ways:...Ch. 4 - Prob. 92PCh. 4 - Consider the general form of the Reynolds...Ch. 4 - Consider the general form of the Reynolds...Ch. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Consider fully developed two-dimensional...Ch. 4 - For the two-dimensional Poiseuille flow of Prob....Ch. 4 - Combine your results from Prob. 4—100 to form the...Ch. 4 - Prob. 103PCh. 4 - Prob. 107PCh. 4 - The velocity field for an incompressible flow is...Ch. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 114PCh. 4 - In a steady, two-dimensional flow field in the...Ch. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 119PCh. 4 - Based on your results of Prob. 4—116, discuss the...Ch. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Water is flowing in a 3-cm-diameter garden hose at...Ch. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - The actual path traveled by an individual fluid...Ch. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - An array of arrows indicating the magnitude and...Ch. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135PCh. 4 - Prob. 136PCh. 4 - A steady, two-dimensional velocity field is given...Ch. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Text book image
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license