Concept explainers
World population (part 2) The relative growth rate r of a function f measures the rate of change of the function compared to its value at a particular point. It is computed as r(t) = f′(t)/f(t).
a. Confirm that the relative growth rate in 1999 (t = 0) for the logistic model in Exercise 98 is r(0) = P′(0)/P(0) = 0.015. This means the world’s population was growing at 1.5% per year in 1999.
b. Compute the relative growth rate of the world’s population in 2010 and 2020. What appears to be happening to the relative growth rate as time increases?
c. Evaluate
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Calculus: Early Transcendentals (3rd Edition)
Additional Math Textbook Solutions
Elementary Statistics
Algebra and Trigonometry (6th Edition)
College Algebra (7th Edition)
Introductory Statistics
Pre-Algebra Student Edition
- What is the y -intercept of the logistic growth model y=c1+aerx ? Show the steps for calculation. What does this point tell us about the population?arrow_forwardWhat is the carrying capacity for a population modeled by the logistic equation P(t)=250,0001+499e0.45t ? initial population for the model?arrow_forwardThe fox population in a certain region has an annualgrowth rate of 9 per year. In the year 2012, therewere 23,900 fox counted in the area. What is the foxpopulation predicted to be in the year 2020 ?arrow_forward
- The population of a culture of bacteria is modeled by the logistic equation P(t)=14,2501+29e0.62t where t is inarrow_forwardThe table shows the mid-year populations (in millions) of five countries in 2015 and the projected populations (in millions) for the year 2025. (a) Find the exponential growth or decay model y=aebt or y=aebt for the population of each country by letting t=15 correspond to 2015. Use the model to predict the population of each country in 2035. (b) You can see that the populations of the United States and the United Kingdom are growing at different rates. What constant in the equation y=aebt gives the growth rate? Discuss the relationship between the different growth rates and the magnitude of the constant.arrow_forwardModeling Human Height with a Logistic Function A male child is 21inches long at birth and grows to an adult height of 73inches. In this exercise, we make a logistic model of his height as a function of age. a. Use the given information to find K and b for the logistic model. b. Suppose he reaches 95 of his adult height at age 16. Use this information and that from part a to find r. Suggestion: You will need to use either the crossing-graphs method or some algebra involving the logarithm. c. Make a logistic model for his height H, in inches, as a function of his age t, in years. d. According to the logistic model, at what age is he growing the fastest? e. Is your answer to part d consistent with your knowledge of how humans grow?arrow_forward
- Does a linear, exponential, or logarithmic model best fit the data in Table 2? Find the model.arrow_forwardWorld Population The following table shows world population N, in billions, in the given year. Year 1950 1960 1970 1980 1990 2000 2010 N 2.56 3.04 3.71 4.45 5.29 6.09 6.85 a. Use regression to find a logistic model for world population. b. What r value do these data yield for humans on planet Earth? c. According to the logistic model using these data, what is the carrying capacity of planet Earth for humans? d. According to this model, when will world population reach 90 of carrying capacity? Round to the nearest year. Note: This represents a rather naive analysis of world population.arrow_forwardA Population of Foxes A breeding group of foxes is introduced into a protected are and exhibits logistic population growth. After t years, the number of foxes is given by N(t)=37.50.25+0.76t foxes. a. How many foxes were introduced into the protected area? b. Calculate N(5) and explain the meaning of the number you have calculated. c. Explain how the population varies with time. Include in your explanation the average rate of increase over the first 10-year period and the average rate of increase over the second 10-year period. d. Find the carrying capacity for foxes in the protected area. e. As we saw in the discussion of terminal velocity for a skydiver, the question of when the carrying capacity is reached may lead to an involved discussion. We ask the question differently. When is 99 of carrying capacity reached?arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning