University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 39.11DQ
To determine
Like Bohr’s atom do the planets of the solar system obey a distance law.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The average value (or expected value) of r^k, where r is the distance of an electron in the state with principal quantum number n and orbital quantum number leo proton in the hydrogen atom is given by the integral below, where Pnl(r) is a radial probability density of the state with quantum number n, lek is an arbitrary power. For an electron in the ground state of the hydrogen atom.
a) calculate <r>nl in terms of the Bohr radius aB
b) calculate <l/r>nl in terms of aB
c) calculate <U(r)>nl, where U(r) = -e^2/(4piE0r). Respond in eV units.
d) Considering also that the electron is in the ground state, estimate the expected value for two kinetic energy <K> and its mean quadratic velocity v.
e) Is it justifiable to disregard relativistic corrections for this system? Justify.
The time-independent
w (r) =
√
1
P =
wavefunction of the ground state of the hydrogen electron is a function of radial position r.
y
3/2
elas
In the equation, ao 0.0529 nm is the Bohr radius.
What is the probability P of finding the hydrogen electron within a spherical shell of inner radius 0.00600 nm and outer radius
0.0316 nm?
For a spherically symmetric state of a hydrogen atom, the
Schrödinger equation in spherical coordinates is
h2 ( d²s
2 dự
+
r dr
- µ = E¼
2m dr2
(a) Show that the 1s wave function for an electron in
hydrogen,
1
1,(7) =
satisfies the Schrödinger equation. (b) What is the energy of
the atom for this state?
Chapter 39 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Similar questions
- For a hydrogen atom in an excited state with principal quantum number n, show that the smallest angle that the orbital angular momentum vector can make with respect to the z-axis is =cos1( n1n) .arrow_forwardDo the Balmer series and the Lyman series overlap? Why? Why not? (Hint: calculate the shortest Balmer line and the longest Lyman line.)arrow_forwardCompute the intrinsic line-width (Δλ) of the Lyman α line (corresponding to the n=2 to n=1) transition for the Hydrogen atom. You may assume that the electron remains in the excited state for a time of the order of 10^−8s. The line-width may be computed using:ΔE=(hc/λ^2)Δλarrow_forward
- A negatively charged muon (µ¯) has the same charge as as electron, but it is heavier. Imagine a hydrogen-like atom in which the electron is replaced by a muon. Such atoms are called muonic atoms, and they can be produced in the laboratory. Assume that such an atom can be described in the same way as the normal Bohr atom. (a) What is the ground state energy of a muonic hydrogen atom? (b) What is the radius of the muon's orbit in the ground state of a muonic hydrogen atom? (c) What is the radius of the muon's orbit in the ground state of a muonic lead atom (Z = 82), i.e., a lead nucleus with one muon (and no electrons) orbiting it? Compare this with the radius of the lead nucleus (about 7 fm). What does this tell you about the muon's "orbital path?"arrow_forwardPlease only type answerarrow_forwardA 10 kg satellite circles earth once energy 2h in an orbit having a radius of 8000 km. Assuming that Bohr's angular momentum postulate applies to satellites just as it does to an electron in hydrogen atom, find the quantum number of the orbit of the satellite.arrow_forward
- Zirconium (Z = 40) has two electrons in an incomplete d subshell. (a) What are the values of n and ℓ for each electron? n = ℓ = (b) What are all possible values of m and ms? m = − to + ms = ± (c) What is the electron configuration in the ground state of zirconium? (Use the first space for entering the shorthand element of the filled inner shells, then use the remaining for the outer-shell electrons. Ex: for Manganese you would enter [Ar]3d54s2)arrow_forwardWhat is the probability that an electron in the 1s orbital will be within a 1.50 Å radius? ?1? = (1/ (?1/2 a03/2)) e-r/a0 and ∫ x2 ebx dx= ebx (x2/b - 2x/b2 + 2/b3 )arrow_forwardConsidering the Bohr’s model, given that an electron is initially located at the ground state (n=1n=1) and it absorbs energy to jump to a particular energy level (n=nxn=nx). If the difference of the radius between the new energy level and the ground state is rnx−r1=5.247×10−9rnx−r1=5.247×10−9, determine nxnx and calculate how much energy is absorbed by the electron to jump to n=nxn=nx from n=1n=1. A. nx=9nx=9; absorbed energy is 13.4321 eV B. nx=10nx=10; absorbed energy is 13.464 eV C. nx=8nx=8; absorbed energy is 13.3875 eV D. nx=20nx=20; absorbed energy is 13.566 eV E. nx=6nx=6; absorbed energy is 13.22 eV F. nx=2nx=2; absorbed energy is 10.2 eV G. nx=12nx=12; absorbed energy is 13.506 eV H. nx=7nx=7; absorbed energy is 13.322 eVarrow_forward
- A 10 kg satellite circles earth once every 2 h in an orbit having a radius of 8000 km. Assuming that Bohr’s angular momentum postulate applies to satellites just as it does to an electron in the hydrogen atom, find the quantum number of the orbit of the satellite.arrow_forwardProve that The fine structure constant,a = v /c, here vị is the velocity of the electron in the ground state of the Bohr atom and a = 28ghc where the symbols have their usual meaning.arrow_forwardUsing the Boh model of an electron orbiting a nucleus, the angular momentum of Earth's orbit around the Sun is 2.67 x 1040 g m2 s−1. Using the Bohr quantization condition, what is the quantum number n for Earth's orbit? If the Earth transitions from this orbit to n-1 (emitting a graviton, which is the gravitational anagloue of the photon), how much energy would be released? Find the frequency of the graviton.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning