
Engineering Mechanics: Dynamics
8th Edition
ISBN: 9781118885840
Author: James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3.9, Problem 173P
To determine
The reaction force exerted on the clay during the impact
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
This is a tilt and rotation question. Here are notes attached for reference. ONLY UPLOAD A SOLUTION IF YOU ARE SURE ABOUT THE ANSWER PLEASE.
What is the difference between true stress/strain and engineering stess/strain? And how do I calculate them?
A rotating shaft of 20 mm diameter is simply supported.
The shaft is loaded with a transverse load of 10 kN as shown in
the figure. The shaft is made from AISI 1095 hot-rolled steel. The
surface has been machined. The shaft operate at
temperature T = 450 °C. Consider a reliability factor of 95%.
Determine
(a) Calculate the reaction forces R, and R₂ (2 points)
(b) Draw the shear force and bending moment diagrams
and determine the maximum bending moment and
shear force. (6 points)
200 mm
20 mm
10,000 N
-50 mm-
A
Not to scale.
(c) Determine the critical location of the shaft and the maximum effective stresses. (3 points)
(d) Calculate the safety factor against yielding. Does the shaft undergo local yielding? (2 points)
(e) Determined the endurance limit, adjusted as necessary with Marin factors. (12 points)
(f) Calculate the fatigue factor of safety based on achieving infinite life. (2 points)
(g) If the fatigue factor of safety is less than 1 (hint: it should be for this problem), then…
Chapter 3 Solutions
Engineering Mechanics: Dynamics
Ch. 3.4 - Prob. 1PCh. 3.4 - The 50-kg crate is stationary when the force P is...Ch. 3.4 - At a certain instant, the 80-lb crate has a...Ch. 3.4 - A man pulls himself up the 15° incline by the...Ch. 3.4 - The 10-Mg truck hauls the 20-Mg trailer. If the...Ch. 3.4 - A 60-kg woman holds a 9-kg package as she stands...Ch. 3.4 - During a brake test, the rear-engine car is...Ch. 3.4 - Prob. 8PCh. 3.4 - The inexperienced driver of an all-wheel-drive car...Ch. 3.4 - Prob. 10P
Ch. 3.4 - The 300-Mg jet airliner has three engines, each of...Ch. 3.4 - Prob. 12PCh. 3.4 - The system of the previous problem is now placed...Ch. 3.4 - Prob. 14PCh. 3.4 - Prob. 15PCh. 3.4 - Prob. 16PCh. 3.4 - Prob. 17PCh. 3.4 - Prob. 18PCh. 3.4 - A worker develops a tension T in the cable as he...Ch. 3.4 - The wheeled cart of Prob. 3/19 is now replaced...Ch. 3.4 - Prob. 21PCh. 3.4 - Prob. 22PCh. 3.4 - Prob. 23PCh. 3.4 - Prob. 24PCh. 3.4 - Prob. 25PCh. 3.4 - Prob. 26PCh. 3.4 - Prob. 27PCh. 3.4 - Prob. 28PCh. 3.4 - Prob. 29PCh. 3.4 - Prob. 30PCh. 3.4 - Prob. 31PCh. 3.4 - Prob. 32PCh. 3.4 - Prob. 33PCh. 3.4 - Prob. 34PCh. 3.4 - Prob. 35PCh. 3.4 - Prob. 36PCh. 3.4 - Prob. 37PCh. 3.4 - Prob. 38PCh. 3.4 - Prob. 39PCh. 3.4 - Prob. 40PCh. 3.4 - Prob. 41PCh. 3.4 - Prob. 42PCh. 3.4 - Prob. 43PCh. 3.4 - Prob. 44PCh. 3.4 - Prob. 45PCh. 3.4 - Two iron spheres, each of which is 100 mm in...Ch. 3.5 - The small 2-kg block A slides down the curved path...Ch. 3.5 - If the 2-kg block passes over the top B of the...Ch. 3.5 - Prob. 49PCh. 3.5 - If the 180-lb ski-jumper attains a speed of 80...Ch. 3.5 - The 4-oz slider has a speed v = 3 ft/sec as it...Ch. 3.5 - Prob. 52PCh. 3.5 - Prob. 53PCh. 3.5 - Determine the speed which the 630-kg four-man...Ch. 3.5 - The hollow tube is pivoted about a horizontal axis...Ch. 3.5 - Prob. 56PCh. 3.5 - Prob. 57PCh. 3.5 - Prob. 58PCh. 3.5 - Prob. 59PCh. 3.5 - Prob. 60PCh. 3.5 - The standard test to determine the maximum lateral...Ch. 3.5 - Prob. 62PCh. 3.5 - Prob. 63PCh. 3.5 - Prob. 64PCh. 3.5 - Prob. 65PCh. 3.5 - A 0.2-kg particle P is constrained to move along...Ch. 3.5 - Prob. 67PCh. 3.5 - At the instant under consideration, the cable...Ch. 3.5 - Prob. 69PCh. 3.5 - The slotted arm OA rotates about a fixed axis...Ch. 3.5 - Prob. 71PCh. 3.5 - Prob. 72PCh. 3.5 - Prob. 73PCh. 3.5 - Prob. 74PCh. 3.5 - Prob. 75PCh. 3.5 - Prob. 76PCh. 3.5 - Prob. 77PCh. 3.5 - The 0.1-lb projectile A is subjected to a drag...Ch. 3.5 - Determine the speed v at which the race car will...Ch. 3.5 - The small object is placed on the inner surface of...Ch. 3.5 - The small object of mass m is placed on the...Ch. 3.5 - Prob. 82PCh. 3.5 - The slotted arm revolves in the horizontal plane...Ch. 3.5 - Beginning from rest when , a 35-kg child slides...Ch. 3.5 - A small coin is placed on the horizontal surface...Ch. 3.5 - The rotating drum of a clothes dryer is shown in...Ch. 3.5 - Prob. 87PCh. 3.5 - Prob. 88PCh. 3.5 - Prob. 89PCh. 3.5 - Prob. 90PCh. 3.5 - Prob. 91PCh. 3.5 - Prob. 92PCh. 3.5 - Prob. 93PCh. 3.5 - The slotted arm OB rotates in a horizontal plane...Ch. 3.5 - Prob. 95PCh. 3.5 - Prob. 96PCh. 3.6 - The spring is unstretched at the position x = 0....Ch. 3.6 - Prob. 98PCh. 3.6 - Prob. 99PCh. 3.6 - Prob. 100PCh. 3.6 - Prob. 101PCh. 3.6 - The small 0.1-kg slider enters the “loop-the-loop”...Ch. 3.6 - Prob. 103PCh. 3.6 - Prob. 104PCh. 3.6 - Prob. 105PCh. 3.6 - Prob. 106PCh. 3.6 - Prob. 107PCh. 3.6 - Prob. 108PCh. 3.6 - Prob. 109PCh. 3.6 - Prob. 110PCh. 3.6 - Prob. 111PCh. 3.6 - Prob. 112PCh. 3.6 - Prob. 113PCh. 3.6 - Prob. 114PCh. 3.6 - Prob. 115PCh. 3.6 - Prob. 116PCh. 3.6 - Prob. 117PCh. 3.6 - Prob. 118PCh. 3.6 - Prob. 119PCh. 3.6 - Prob. 120PCh. 3.6 - Prob. 121PCh. 3.6 - Prob. 122PCh. 3.6 - Prob. 123PCh. 3.6 - Prob. 124PCh. 3.6 - Two 425,000-lb locomotives pull fifty 200,000-lb...Ch. 3.6 - Prob. 126PCh. 3.6 - Prob. 127PCh. 3.6 - Prob. 128PCh. 3.6 - Prob. 129PCh. 3.6 - The system is released from rest with no slack in...Ch. 3.6 - Prob. 131PCh. 3.6 - Prob. 132PCh. 3.6 - Prob. 133PCh. 3.6 - Prob. 134PCh. 3.6 - The 6-kg cylinder is released from rest in the...Ch. 3.6 - Prob. 136PCh. 3.6 - Extensive testing of an experimental 2000-lb...Ch. 3.6 - The vertical motion of the 50-lb block is...Ch. 3.7 - Prob. 139PCh. 3.7 - Prob. 140PCh. 3.7 - Prob. 141PCh. 3.7 - Prob. 142PCh. 3.7 - Prob. 143PCh. 3.7 - Prob. 144PCh. 3.7 - Prob. 145PCh. 3.7 - Prob. 146PCh. 3.7 - Prob. 147PCh. 3.7 - Prob. 148PCh. 3.7 - The particle of mass m = 1.2 kg is attached to the...Ch. 3.7 - The 10-kg collar slides on the smooth vertical rod...Ch. 3.7 - The system is released from rest with the spring...Ch. 3.7 - The two wheels consisting of hoops and spokes of...Ch. 3.7 - Prob. 154PCh. 3.7 - The two 1.5-kg spheres are released from rest and...Ch. 3.7 - Prob. 156PCh. 3.7 - Prob. 157PCh. 3.7 - Prob. 158PCh. 3.7 - The small bodies A and B each of mass m are...Ch. 3.7 - Prob. 160PCh. 3.7 - Prob. 161PCh. 3.7 - Prob. 162PCh. 3.7 - Prob. 163PCh. 3.7 - A satellite is put into an elliptical orbit around...Ch. 3.7 - Prob. 165PCh. 3.7 - Prob. 166PCh. 3.7 - Prob. 167PCh. 3.7 - Prob. 168PCh. 3.7 - Prob. 169PCh. 3.7 - Prob. 170PCh. 3.7 - Prob. 171PCh. 3.7 - Prob. 172PCh. 3.9 - A 0.2-kg wad of clay is released from rest and...Ch. 3.9 - Prob. 174PCh. 3.9 - Prob. 175PCh. 3.9 - Prob. 176PCh. 3.9 - Prob. 177PCh. 3.9 - Prob. 178PCh. 3.9 - Careful measurements made during the impact of the...Ch. 3.9 - Prob. 180PCh. 3.9 - Prob. 181PCh. 3.9 - Prob. 182PCh. 3.9 - Crate A is traveling down the incline with a speed...Ch. 3.9 - The 15 200-kg lunar lander is descending onto the...Ch. 3.9 - A boy weighing 100 lb runs and jumps on his 20-lb...Ch. 3.9 - The snowboarder is traveling with a velocity of 6...Ch. 3.9 - Prob. 187PCh. 3.9 - Prob. 188PCh. 3.9 - Prob. 189PCh. 3.9 - Prob. 190PCh. 3.9 - Prob. 191PCh. 3.9 - Prob. 192PCh. 3.9 - Prob. 193PCh. 3.9 - Prob. 194PCh. 3.9 - All elements of the previous problem remain...Ch. 3.9 - Prob. 196PCh. 3.9 - Prob. 197PCh. 3.9 - Prob. 198PCh. 3.9 - The hydraulic braking system for the truck and...Ch. 3.9 - The 100-lb block is stationary at time t = 0, and...Ch. 3.9 - Prob. 201PCh. 3.9 - Prob. 202PCh. 3.9 - Prob. 203PCh. 3.9 - Prob. 204PCh. 3.9 - Prob. 205PCh. 3.9 - Prob. 206PCh. 3.9 - Prob. 207PCh. 3.9 - The 1.2-lb sphere is moving in the horizontal x-y...Ch. 3.9 - Prob. 209PCh. 3.9 - A tennis player strikes the tennis ball with her...Ch. 3.9 - Prob. 211PCh. 3.9 - Prob. 212PCh. 3.9 - Prob. 213PCh. 3.9 - Prob. 214PCh. 3.10 - Determine the magnitude HO of the angular momentum...Ch. 3.10 - Prob. 216PCh. 3.10 - Prob. 217PCh. 3.10 - Prob. 218PCh. 3.10 - Prob. 219PCh. 3.10 - Prob. 220PCh. 3.10 - Prob. 221PCh. 3.10 - Prob. 222PCh. 3.10 - Prob. 223PCh. 3.10 - Prob. 224PCh. 3.10 - Prob. 225PCh. 3.10 - Prob. 226PCh. 3.10 - Prob. 227PCh. 3.10 - Prob. 228PCh. 3.10 - Prob. 229PCh. 3.10 - Prob. 230PCh. 3.10 - A wad of clay of mass m1 with an initial...Ch. 3.10 - Prob. 232PCh. 3.10 - Prob. 233PCh. 3.10 - A particle moves on the inside surface of a smooth...Ch. 3.10 - Prob. 235PCh. 3.10 - Prob. 236PCh. 3.10 - Prob. 237PCh. 3.10 - Prob. 238PCh. 3.10 - Prob. 239PCh. 3.10 - Prob. 240PCh. 3.12 - Prob. 241PCh. 3.12 - Compute the final velocities v1′ and v2′ after...Ch. 3.12 - Prob. 243PCh. 3.12 - Prob. 244PCh. 3.12 - Prob. 245PCh. 3.12 - Prob. 246PCh. 3.12 - Prob. 247PCh. 3.12 - Prob. 248PCh. 3.12 - Prob. 249PCh. 3.12 - If the center of the ping-pong ball is to clear...Ch. 3.12 - Prob. 251PCh. 3.12 - Prob. 252PCh. 3.12 - Prob. 253PCh. 3.12 - Prob. 254PCh. 3.12 - Prob. 255PCh. 3.12 - A 0.1-kg meteor and a 1000-kg spacecraft have the...Ch. 3.12 - In a pool game the cue ball A must strike the...Ch. 3.12 - Prob. 258PCh. 3.12 - Prob. 259PCh. 3.12 - Prob. 260PCh. 3.12 - Prob. 261PCh. 3.12 - Prob. 262PCh. 3.12 - Prob. 263PCh. 3.12 - Prob. 264PCh. 3.12 - Prob. 265PCh. 3.12 - Prob. 266PCh. 3.12 - The 2-kg sphere is projected horizontally with a...Ch. 3.12 - Prob. 268PCh. 3.12 - Prob. 269PCh. 3.12 - Prob. 270PCh. 3.12 - Prob. 271PCh. 3.12 - Prob. 272PCh. 3.12 - Prob. 273PCh. 3.12 - Prob. 274PCh. 3.12 - Prob. 275PCh. 3.12 - Prob. 276PCh. 3.12 - Prob. 277PCh. 3.12 - Prob. 278PCh. 3.12 - Determine the speed v required of an earth...Ch. 3.12 - Prob. 280PCh. 3.12 - Prob. 281PCh. 3.12 - Prob. 282PCh. 3.12 - Prob. 283PCh. 3.12 - Prob. 284PCh. 3.12 - Prob. 285PCh. 3.12 - Compute the magnitude of the necessary launch...Ch. 3.12 - Prob. 287PCh. 3.12 - Prob. 288PCh. 3.12 - Prob. 289PCh. 3.12 - Prob. 290PCh. 3.12 - Prob. 291PCh. 3.12 - Prob. 292PCh. 3.12 - The perigee and apogee altitudes above the surface...Ch. 3.12 - Prob. 294PCh. 3.12 - Prob. 295PCh. 3.12 - Prob. 296PCh. 3.12 - Prob. 297PCh. 3.12 - Prob. 298PCh. 3.12 - Prob. 299PCh. 3.12 - Prob. 300PCh. 3.15 - Prob. 301RPCh. 3.15 - Prob. 302RPCh. 3.15 - Prob. 303RPCh. 3.15 - Prob. 304RPCh. 3.15 - Prob. 305RPCh. 3.15 - Prob. 306RPCh. 3.15 - Prob. 307RPCh. 3.15 - Prob. 308RPCh. 3.15 - Prob. 309RPCh. 3.15 - The slider A has a mass of 2 kg and moves with...Ch. 3.15 - Prob. 311RPCh. 3.15 - Prob. 312RPCh. 3.15 - Prob. 313RPCh. 3.15 - Prob. 314RPCh. 3.15 - A ball is released from rest relative to the...Ch. 3.15 - The small slider A moves with negligible friction...Ch. 3.15 - Prob. 317RPCh. 3.15 - Prob. 318RPCh. 3.15 - Prob. 319RPCh. 3.15 - Prob. 320RPCh. 3.15 - Prob. 321RPCh. 3.15 - The simple 2-kg pendulum is released from rest in...Ch. 3.15 - Prob. 323RPCh. 3.15 - Prob. 324RPCh. 3.15 - Prob. 325RPCh. 3.15 - Prob. 326RPCh. 3.15 - Prob. 327RPCh. 3.15 - Six identical spheres are arranged as shown in the...Ch. 3.15 - Prob. 329RPCh. 3.15 - Prob. 330RPCh. 3.15 - Prob. 331RPCh. 3.15 - Prob. 332RPCh. 3.15 - Prob. 333RPCh. 3.15 - Prob. 334RPCh. 3.15 - Prob. 335RPCh. 3.15 - Prob. 336RPCh. 3.15 - Prob. 337RPCh. 3.15 - Prob. 338RPCh. 3.15 - Prob. 339RPCh. 3.15 - The bungee jumper, an 80-kg man, falls from the...Ch. 3.15 - Prob. 341RPCh. 3.15 - Prob. 342RPCh. 3.15 - Prob. 343RPCh. 3.15 - Prob. 344RPCh. 3.15 - Prob. 345RPCh. 3.15 - Prob. 346RPCh. 3.15 - Prob. 347RPCh. 3.15 - Prob. 348RPCh. 3.15 - Prob. 349RPCh. 3.15 - Prob. 350RPCh. 3.15 - The tennis player practices by hitting the ball...Ch. 3.15 - A particle of mass m is introduced with zero...Ch. 3.15 - The system of Prob. 3/166 is repeated here. The...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6: Refer to the figure.Given: W1 = 200 kN/m; W2 = 300 kN/m; L1 = 2 m; L2 = 3 m; L3 = 2 m(a) Calculate the total length L so that the resulting upward pressureq is uniform. (b) draw the shear and moment diagram and determinethe maximum shear, maximum positive and negative bendingmoments.arrow_forwardA six cylinder, four-stroke diesel engine develops a power of 200 kW at 2000 rpm. The bsfc is 0.2 kW/kg h of fuel with 34.9° API. The fuel is injected at an average pressure of 350 bar and the pressure in the combustion chamber is 40 bar. Assuming Ca for injector 0.75 and the atmospheric pressure 1 bar. Determine the period of injection in seconds if the total orifice area required per injector is 0.4876 × 10-6 m².arrow_forwardTrieed a detailed drawing Win explanatio LL Antsmi 1981x pu + 96252 اه 6. The Pre-combustion chamber design engines employ nozzle type commonly referred to as a ....... a. inward-opening nozzle b. multiple-hole nozzle. c. pintle nozzle. d. none of these. 7. If the temperature of the spark plug tip is less than 350 °C, ......... a. the plug might not work. b. the carbon deposits would increase. 8. Port injection sprays fuel....... c. pre-ignition will occur. d. none of these. a. towards the intake valve. b. in the engine cylinder. c. in the throttle body assembly. d. none of these. 9. When the fuel-air mixture changed from best power to a richer ratio, the spark advance should be........ a. increased. b. decreased. c. left unchanged. d. none of these. d. none of these. 10. Spark plugs are classified as hot plugs and cold plugs depending upon ........ a. spark gap. b. the type of plug c. the operating temperature insulator. range of the electrode tip. ---20125 750 x2.01 SP 5.arrow_forward
- A 1. How does the octane number (O.N.) of the fuel a. Higher ignition advance is required for a high O.N. fuel. b. Higher ignition retard is required for a high O.N. fuel. affect spark ing:d. Nou does not affect spark timing. c. The octane number 2. How does the ignition system account for load change? these. of a. The throttle b. The vacuum ignition governor c. The mechanism of d. None of is wide opened. provide additional spark advance at part throttle positions. centrifugal advance does the job. these. 3. In the common rail fuel system the fuel is metered by ........ a. low pressure pump. b. injectors. c. high pressure pump. d. none of these. 4.......... is the time period, measured in degrees of cam rotation, during which the contact points remain closed between each opening. a. Distributor. b. Dwell. c. ECU. d. none of these. 5. The trigger wheel in TCI system replaces the ......... used in a contact breaker distributor. a. pickup coil. b. distributor cam. c. condenser. 750 x2.01…arrow_forwarda い يكا 4 +91- pu Answer the following statements by true or false, giving the reason for your answer: 1. Injection pressure in CI engines should be sufficiently high. 2. The purpose of the condenser in battery ignition system is to prevent spark in the ignition coil assembly. 3. An idling engine requires lean mixture of fuel and air. 4. Factors which decide optimum engine firing order are engine vibration, engine cooling and back pressure. 5. It is the duty of the header to control over speeding during CI engine operation when drastic reduction in load occurs. ---20125 750 x2.01 SParrow_forward6. The Pre-combustion chamber design engines employ nozzle type commonly referred to as a a. inward-opening nozzle b. multiple-hole nozzle. c. pintle nozzle. d. none of these. 7. If the temperature of the spark plug tip is less than 350 °C, ........ a. the plug might b. the carbon deposits not work. would increase. c. pre-ignition will occur. d. none of these. 8. Port injection sprays fuel........ a. towards the intake valve. b. in the engine cylinder. c. in the throttle body d. none of assembly. these. 9. When the fuel-air mixture changed from best power to a richer ratio, the spark advance should be ........ a. increased. b. decreased. c. left unchanged. d. none of these. 10. Spark plugs are classified as hot plugs and cold plugs depending upon a. spark gap. b. the type of plug c. the operating temperature d. none of these. range of the electrode tip. insulator.arrow_forward
- 1: A H = 6 m cantilever retaining wall is subjected to a soil pressurelinearly varying from zero at the top to 90 kPa at the bottom. As an additionalsupport, it is anchored at depth y = 2 m. with maximum tension equal to 25kN. Assume that the stem provides fully retrained support. Draw the shearand moment diagram of the wall to calculate the following: (a) Maximumpositive bending moment per linear meter; (b) maximum negative bendingmoment per linear meter; (c) maximum shear force per linear meter.arrow_forwardCORRECT AND DETAILED SOLUTION WITH COMPLETE FBD ONLY. I WILL UPVOTE. 9: The beam shown has a width of 80 mm and its allowable bending stress is not to exceed 120 MPa. Calculatethe required depth of the beam.arrow_forwardPROBLEM 4: A pre-stressed concrete pile of length L (m) is to be picked up by crane cables at two points, both equidistant from the ends. If the concrete pile has a cross-sectional area of A (m²) and concrete has unit weight of Yc (kN/m³), calculate the distance of the pick-up points from the end in terms of pile length. (Hint: to minimize the absolute maximum moment, the maximum negative and maximum negative moments should be equal)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY