
Engineering Mechanics: Dynamics
8th Edition
ISBN: 9781118885840
Author: James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 3.6, Problem 118P
To determine
The final velocity of the collar after compression
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
This problem illustrates that the factor of safety for a machine element depends on the particular point selected for
analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and
B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces
F = 1.100 kN, P = 8.00 kN, and T = 50.00 N-m. Given: Sy = 280 MPa.
B
-100 mm-
15-mm D.
a) Determine the value of the axial stress at point B.
b) Determine the value of the shear stress at point B.
c) Determine the value of the Von Mises stress at
point B.
P
F
A piston-cylinder device initially contains 0.08 m^3 of nitrogen gas at 130
kPa and 170°C. The nitrogen is expanded to a pressure of 80 kPa via
isentropic expansion. Determine the final temperature and the boundary
work done by the system during this process.
A Carnot (ideal) heat pump is to be used to heat a house and maintain it at 22°C
in winter. On a day when the average outdoor temperature remains at about 0°C,
the house is estimated to lose heat at a rate of 65,000 kJ/h. If the heat pump
consumes 6 kW of power while operating, determine:
(a) how long the heat pump ran on that day
(b) the total heating costs, assuming an average price of 11¢/kWh for electricity
(c) the heating cost for the same day if an 85% efficient electric furnace is used
instead of a heat pump.
Chapter 3 Solutions
Engineering Mechanics: Dynamics
Ch. 3.4 - Prob. 1PCh. 3.4 - The 50-kg crate is stationary when the force P is...Ch. 3.4 - At a certain instant, the 80-lb crate has a...Ch. 3.4 - A man pulls himself up the 15° incline by the...Ch. 3.4 - The 10-Mg truck hauls the 20-Mg trailer. If the...Ch. 3.4 - A 60-kg woman holds a 9-kg package as she stands...Ch. 3.4 - During a brake test, the rear-engine car is...Ch. 3.4 - Prob. 8PCh. 3.4 - The inexperienced driver of an all-wheel-drive car...Ch. 3.4 - Prob. 10P
Ch. 3.4 - The 300-Mg jet airliner has three engines, each of...Ch. 3.4 - Prob. 12PCh. 3.4 - The system of the previous problem is now placed...Ch. 3.4 - Prob. 14PCh. 3.4 - Prob. 15PCh. 3.4 - Prob. 16PCh. 3.4 - Prob. 17PCh. 3.4 - Prob. 18PCh. 3.4 - A worker develops a tension T in the cable as he...Ch. 3.4 - The wheeled cart of Prob. 3/19 is now replaced...Ch. 3.4 - Prob. 21PCh. 3.4 - Prob. 22PCh. 3.4 - Prob. 23PCh. 3.4 - Prob. 24PCh. 3.4 - Prob. 25PCh. 3.4 - Prob. 26PCh. 3.4 - Prob. 27PCh. 3.4 - Prob. 28PCh. 3.4 - Prob. 29PCh. 3.4 - Prob. 30PCh. 3.4 - Prob. 31PCh. 3.4 - Prob. 32PCh. 3.4 - Prob. 33PCh. 3.4 - Prob. 34PCh. 3.4 - Prob. 35PCh. 3.4 - Prob. 36PCh. 3.4 - Prob. 37PCh. 3.4 - Prob. 38PCh. 3.4 - Prob. 39PCh. 3.4 - Prob. 40PCh. 3.4 - Prob. 41PCh. 3.4 - Prob. 42PCh. 3.4 - Prob. 43PCh. 3.4 - Prob. 44PCh. 3.4 - Prob. 45PCh. 3.4 - Two iron spheres, each of which is 100 mm in...Ch. 3.5 - The small 2-kg block A slides down the curved path...Ch. 3.5 - If the 2-kg block passes over the top B of the...Ch. 3.5 - Prob. 49PCh. 3.5 - If the 180-lb ski-jumper attains a speed of 80...Ch. 3.5 - The 4-oz slider has a speed v = 3 ft/sec as it...Ch. 3.5 - Prob. 52PCh. 3.5 - Prob. 53PCh. 3.5 - Determine the speed which the 630-kg four-man...Ch. 3.5 - The hollow tube is pivoted about a horizontal axis...Ch. 3.5 - Prob. 56PCh. 3.5 - Prob. 57PCh. 3.5 - Prob. 58PCh. 3.5 - Prob. 59PCh. 3.5 - Prob. 60PCh. 3.5 - The standard test to determine the maximum lateral...Ch. 3.5 - Prob. 62PCh. 3.5 - Prob. 63PCh. 3.5 - Prob. 64PCh. 3.5 - Prob. 65PCh. 3.5 - A 0.2-kg particle P is constrained to move along...Ch. 3.5 - Prob. 67PCh. 3.5 - At the instant under consideration, the cable...Ch. 3.5 - Prob. 69PCh. 3.5 - The slotted arm OA rotates about a fixed axis...Ch. 3.5 - Prob. 71PCh. 3.5 - Prob. 72PCh. 3.5 - Prob. 73PCh. 3.5 - Prob. 74PCh. 3.5 - Prob. 75PCh. 3.5 - Prob. 76PCh. 3.5 - Prob. 77PCh. 3.5 - The 0.1-lb projectile A is subjected to a drag...Ch. 3.5 - Determine the speed v at which the race car will...Ch. 3.5 - The small object is placed on the inner surface of...Ch. 3.5 - The small object of mass m is placed on the...Ch. 3.5 - Prob. 82PCh. 3.5 - The slotted arm revolves in the horizontal plane...Ch. 3.5 - Beginning from rest when , a 35-kg child slides...Ch. 3.5 - A small coin is placed on the horizontal surface...Ch. 3.5 - The rotating drum of a clothes dryer is shown in...Ch. 3.5 - Prob. 87PCh. 3.5 - Prob. 88PCh. 3.5 - Prob. 89PCh. 3.5 - Prob. 90PCh. 3.5 - Prob. 91PCh. 3.5 - Prob. 92PCh. 3.5 - Prob. 93PCh. 3.5 - The slotted arm OB rotates in a horizontal plane...Ch. 3.5 - Prob. 95PCh. 3.5 - Prob. 96PCh. 3.6 - The spring is unstretched at the position x = 0....Ch. 3.6 - Prob. 98PCh. 3.6 - Prob. 99PCh. 3.6 - Prob. 100PCh. 3.6 - Prob. 101PCh. 3.6 - The small 0.1-kg slider enters the “loop-the-loop”...Ch. 3.6 - Prob. 103PCh. 3.6 - Prob. 104PCh. 3.6 - Prob. 105PCh. 3.6 - Prob. 106PCh. 3.6 - Prob. 107PCh. 3.6 - Prob. 108PCh. 3.6 - Prob. 109PCh. 3.6 - Prob. 110PCh. 3.6 - Prob. 111PCh. 3.6 - Prob. 112PCh. 3.6 - Prob. 113PCh. 3.6 - Prob. 114PCh. 3.6 - Prob. 115PCh. 3.6 - Prob. 116PCh. 3.6 - Prob. 117PCh. 3.6 - Prob. 118PCh. 3.6 - Prob. 119PCh. 3.6 - Prob. 120PCh. 3.6 - Prob. 121PCh. 3.6 - Prob. 122PCh. 3.6 - Prob. 123PCh. 3.6 - Prob. 124PCh. 3.6 - Two 425,000-lb locomotives pull fifty 200,000-lb...Ch. 3.6 - Prob. 126PCh. 3.6 - Prob. 127PCh. 3.6 - Prob. 128PCh. 3.6 - Prob. 129PCh. 3.6 - The system is released from rest with no slack in...Ch. 3.6 - Prob. 131PCh. 3.6 - Prob. 132PCh. 3.6 - Prob. 133PCh. 3.6 - Prob. 134PCh. 3.6 - The 6-kg cylinder is released from rest in the...Ch. 3.6 - Prob. 136PCh. 3.6 - Extensive testing of an experimental 2000-lb...Ch. 3.6 - The vertical motion of the 50-lb block is...Ch. 3.7 - Prob. 139PCh. 3.7 - Prob. 140PCh. 3.7 - Prob. 141PCh. 3.7 - Prob. 142PCh. 3.7 - Prob. 143PCh. 3.7 - Prob. 144PCh. 3.7 - Prob. 145PCh. 3.7 - Prob. 146PCh. 3.7 - Prob. 147PCh. 3.7 - Prob. 148PCh. 3.7 - The particle of mass m = 1.2 kg is attached to the...Ch. 3.7 - The 10-kg collar slides on the smooth vertical rod...Ch. 3.7 - The system is released from rest with the spring...Ch. 3.7 - The two wheels consisting of hoops and spokes of...Ch. 3.7 - Prob. 154PCh. 3.7 - The two 1.5-kg spheres are released from rest and...Ch. 3.7 - Prob. 156PCh. 3.7 - Prob. 157PCh. 3.7 - Prob. 158PCh. 3.7 - The small bodies A and B each of mass m are...Ch. 3.7 - Prob. 160PCh. 3.7 - Prob. 161PCh. 3.7 - Prob. 162PCh. 3.7 - Prob. 163PCh. 3.7 - A satellite is put into an elliptical orbit around...Ch. 3.7 - Prob. 165PCh. 3.7 - Prob. 166PCh. 3.7 - Prob. 167PCh. 3.7 - Prob. 168PCh. 3.7 - Prob. 169PCh. 3.7 - Prob. 170PCh. 3.7 - Prob. 171PCh. 3.7 - Prob. 172PCh. 3.9 - A 0.2-kg wad of clay is released from rest and...Ch. 3.9 - Prob. 174PCh. 3.9 - Prob. 175PCh. 3.9 - Prob. 176PCh. 3.9 - Prob. 177PCh. 3.9 - Prob. 178PCh. 3.9 - Careful measurements made during the impact of the...Ch. 3.9 - Prob. 180PCh. 3.9 - Prob. 181PCh. 3.9 - Prob. 182PCh. 3.9 - Crate A is traveling down the incline with a speed...Ch. 3.9 - The 15 200-kg lunar lander is descending onto the...Ch. 3.9 - A boy weighing 100 lb runs and jumps on his 20-lb...Ch. 3.9 - The snowboarder is traveling with a velocity of 6...Ch. 3.9 - Prob. 187PCh. 3.9 - Prob. 188PCh. 3.9 - Prob. 189PCh. 3.9 - Prob. 190PCh. 3.9 - Prob. 191PCh. 3.9 - Prob. 192PCh. 3.9 - Prob. 193PCh. 3.9 - Prob. 194PCh. 3.9 - All elements of the previous problem remain...Ch. 3.9 - Prob. 196PCh. 3.9 - Prob. 197PCh. 3.9 - Prob. 198PCh. 3.9 - The hydraulic braking system for the truck and...Ch. 3.9 - The 100-lb block is stationary at time t = 0, and...Ch. 3.9 - Prob. 201PCh. 3.9 - Prob. 202PCh. 3.9 - Prob. 203PCh. 3.9 - Prob. 204PCh. 3.9 - Prob. 205PCh. 3.9 - Prob. 206PCh. 3.9 - Prob. 207PCh. 3.9 - The 1.2-lb sphere is moving in the horizontal x-y...Ch. 3.9 - Prob. 209PCh. 3.9 - A tennis player strikes the tennis ball with her...Ch. 3.9 - Prob. 211PCh. 3.9 - Prob. 212PCh. 3.9 - Prob. 213PCh. 3.9 - Prob. 214PCh. 3.10 - Determine the magnitude HO of the angular momentum...Ch. 3.10 - Prob. 216PCh. 3.10 - Prob. 217PCh. 3.10 - Prob. 218PCh. 3.10 - Prob. 219PCh. 3.10 - Prob. 220PCh. 3.10 - Prob. 221PCh. 3.10 - Prob. 222PCh. 3.10 - Prob. 223PCh. 3.10 - Prob. 224PCh. 3.10 - Prob. 225PCh. 3.10 - Prob. 226PCh. 3.10 - Prob. 227PCh. 3.10 - Prob. 228PCh. 3.10 - Prob. 229PCh. 3.10 - Prob. 230PCh. 3.10 - A wad of clay of mass m1 with an initial...Ch. 3.10 - Prob. 232PCh. 3.10 - Prob. 233PCh. 3.10 - A particle moves on the inside surface of a smooth...Ch. 3.10 - Prob. 235PCh. 3.10 - Prob. 236PCh. 3.10 - Prob. 237PCh. 3.10 - Prob. 238PCh. 3.10 - Prob. 239PCh. 3.10 - Prob. 240PCh. 3.12 - Prob. 241PCh. 3.12 - Compute the final velocities v1′ and v2′ after...Ch. 3.12 - Prob. 243PCh. 3.12 - Prob. 244PCh. 3.12 - Prob. 245PCh. 3.12 - Prob. 246PCh. 3.12 - Prob. 247PCh. 3.12 - Prob. 248PCh. 3.12 - Prob. 249PCh. 3.12 - If the center of the ping-pong ball is to clear...Ch. 3.12 - Prob. 251PCh. 3.12 - Prob. 252PCh. 3.12 - Prob. 253PCh. 3.12 - Prob. 254PCh. 3.12 - Prob. 255PCh. 3.12 - A 0.1-kg meteor and a 1000-kg spacecraft have the...Ch. 3.12 - In a pool game the cue ball A must strike the...Ch. 3.12 - Prob. 258PCh. 3.12 - Prob. 259PCh. 3.12 - Prob. 260PCh. 3.12 - Prob. 261PCh. 3.12 - Prob. 262PCh. 3.12 - Prob. 263PCh. 3.12 - Prob. 264PCh. 3.12 - Prob. 265PCh. 3.12 - Prob. 266PCh. 3.12 - The 2-kg sphere is projected horizontally with a...Ch. 3.12 - Prob. 268PCh. 3.12 - Prob. 269PCh. 3.12 - Prob. 270PCh. 3.12 - Prob. 271PCh. 3.12 - Prob. 272PCh. 3.12 - Prob. 273PCh. 3.12 - Prob. 274PCh. 3.12 - Prob. 275PCh. 3.12 - Prob. 276PCh. 3.12 - Prob. 277PCh. 3.12 - Prob. 278PCh. 3.12 - Determine the speed v required of an earth...Ch. 3.12 - Prob. 280PCh. 3.12 - Prob. 281PCh. 3.12 - Prob. 282PCh. 3.12 - Prob. 283PCh. 3.12 - Prob. 284PCh. 3.12 - Prob. 285PCh. 3.12 - Compute the magnitude of the necessary launch...Ch. 3.12 - Prob. 287PCh. 3.12 - Prob. 288PCh. 3.12 - Prob. 289PCh. 3.12 - Prob. 290PCh. 3.12 - Prob. 291PCh. 3.12 - Prob. 292PCh. 3.12 - The perigee and apogee altitudes above the surface...Ch. 3.12 - Prob. 294PCh. 3.12 - Prob. 295PCh. 3.12 - Prob. 296PCh. 3.12 - Prob. 297PCh. 3.12 - Prob. 298PCh. 3.12 - Prob. 299PCh. 3.12 - Prob. 300PCh. 3.15 - Prob. 301RPCh. 3.15 - Prob. 302RPCh. 3.15 - Prob. 303RPCh. 3.15 - Prob. 304RPCh. 3.15 - Prob. 305RPCh. 3.15 - Prob. 306RPCh. 3.15 - Prob. 307RPCh. 3.15 - Prob. 308RPCh. 3.15 - Prob. 309RPCh. 3.15 - The slider A has a mass of 2 kg and moves with...Ch. 3.15 - Prob. 311RPCh. 3.15 - Prob. 312RPCh. 3.15 - Prob. 313RPCh. 3.15 - Prob. 314RPCh. 3.15 - A ball is released from rest relative to the...Ch. 3.15 - The small slider A moves with negligible friction...Ch. 3.15 - Prob. 317RPCh. 3.15 - Prob. 318RPCh. 3.15 - Prob. 319RPCh. 3.15 - Prob. 320RPCh. 3.15 - Prob. 321RPCh. 3.15 - The simple 2-kg pendulum is released from rest in...Ch. 3.15 - Prob. 323RPCh. 3.15 - Prob. 324RPCh. 3.15 - Prob. 325RPCh. 3.15 - Prob. 326RPCh. 3.15 - Prob. 327RPCh. 3.15 - Six identical spheres are arranged as shown in the...Ch. 3.15 - Prob. 329RPCh. 3.15 - Prob. 330RPCh. 3.15 - Prob. 331RPCh. 3.15 - Prob. 332RPCh. 3.15 - Prob. 333RPCh. 3.15 - Prob. 334RPCh. 3.15 - Prob. 335RPCh. 3.15 - Prob. 336RPCh. 3.15 - Prob. 337RPCh. 3.15 - Prob. 338RPCh. 3.15 - Prob. 339RPCh. 3.15 - The bungee jumper, an 80-kg man, falls from the...Ch. 3.15 - Prob. 341RPCh. 3.15 - Prob. 342RPCh. 3.15 - Prob. 343RPCh. 3.15 - Prob. 344RPCh. 3.15 - Prob. 345RPCh. 3.15 - Prob. 346RPCh. 3.15 - Prob. 347RPCh. 3.15 - Prob. 348RPCh. 3.15 - Prob. 349RPCh. 3.15 - Prob. 350RPCh. 3.15 - The tennis player practices by hitting the ball...Ch. 3.15 - A particle of mass m is introduced with zero...Ch. 3.15 - The system of Prob. 3/166 is repeated here. The...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- From the information in the image, I needed to find the orientation of U relative to Q in vector basis q_hat. I transformed the euler angle/axis representation to euler parameters. Then I got its conjugate in order to get the euler parameter in N frame relative to Q. The problem gave the euler angle/axis representation in Q frame relative to N, so I needed to find the conjugate. Then I used the euler parameter rule of successive rotation to find the final euler parameters that describe the orientation of U relative to Q. However that orientation is in n_hat which is the intermediate frame. How do I get the final result in q_hat?arrow_forwardA proposed method of power generation involves collecting and storing solar energy in large artificial lakes a few meters deep, called solar ponds. Solar energy is absorbed by all parts of the pond, and the water temperature rises everywhere. The top part of the pond, however, loses much of the heat it absorbs to the atmosphere, and as a result, the cool surface water serves as insulation for the bottom part of the pond and helps trap the energy there. Usually, salt is planted at the bottom of the pond to prevent the rise of this hot water to the top. A heat engine that uses an organic fluid, such as alcohol, as the working fluid can be operated between the top and the bottom portions of the pond. If the water temperature is 27°C near the surface and 72°C near the bottom of the pond, determine the maximum thermal efficiency that this power plant can have. Treat the cycle as an ideal heat engine. Would a heat engine operating under these temperature conditions (27°C and 72°C) be…arrow_forwardA standard Carnot heat engine cycle is executed in a closed system between the temperature limits of 320 and 1350 K, with air as the working fluid. The pressures before and after the isothermal compression are 150 and 300 kPa, respectively. Sketch the TS diagram for this cycle. If the net work output per cycle is 0.75 kJ, determine the efficiency of the cycle and the heat transfer to the air (working fluid) per cycle.arrow_forward
- PROBLEM 10: A sleeve in the form of a circular tube of length L is Nut placed around a bolt and fitted between washers at each end. The nut is then turned until it is just snug. Use material properties as follows: For the sleeve, as = 21 x 106/°C and Es = 100 GPa Washer Bolt ·L· Sleeve Bolt head For the bolt, αB = 10 × 10-6/°C and EB = 200 GPa. 1. Calculate the temperature rise that is required to produce a compressive stress of 25 MPa in the sleeve.arrow_forwardThis problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces F = 1.100 kN, P = 8.00 kN, and T = 50.00 N·m. Given: Sy = 280 MPa. B -100 mm- 15-mm D. a) What is the value of the axial stress at point A? b)What is the value of the shear stress at point A? c)Determine the value of the Von Mises stress at point A. P Farrow_forwardThe three steel wires, each of cross-sectional area 0.05 in2, support the weight W. Theirunstressed lengths are 74.98 ft, 74.99 ft, and 75.00 ft. Use E = 29 x 106 psi.1. Find the stress (psi) in the longest wire if W = 1500 lb.2. Determine the stress in the shortest wire if W = 500 lb ANSWERS: 6130 psi; 6930 psiarrow_forward
- 1: The concrete column is reinforced using four steel reinforcing rods, each having a diameter of 18 mm. Determine the stress in the concrete and the steel if the column is subjected to an axial load of 800 kN. Est = 200 GPa, Ec = 25 GPa. Complete fbd.arrow_forward5: As shown, two aluminum rods AB and BC, hinged to rigid supports, arepinned together at B to carry a vertical load P = 6000 lb. If each rod has a crosssectional area of 0.60 in2 and E = 10 x 106 psi. Use α = θ = 30⁰. Calculate the change in length (in) of rod AB and indicate if it elongates orshortens. Calculate the vertical displacement of B (in) and horizontal displacement of B (in). Complete fbd.arrow_forward2: The rigid bar supports the uniform distributedload of 6 kip/ft. Determine the force in each cable if each cable has a cross-sectional area of 0.05 in^2 , and E = 31(10)^3 ksi.arrow_forward
- In (Figure 1), take m₁ = 4 kg and mB = 4.6 kg. Determine the z component of the angular momentum Ho of particle A about point O. Determine the z component of the angular momentum Ho of particle B about point O. Suppose that 5 m 8 m/s 4 m 1.5 m 4 m B MB 1 m 2 m 5 30° 6 m/s MAarrow_forwardThe two disks A and B have a mass of 4 kg and 6 kg, respectively. They collide with the initial velocities shown. The coefficient of restitution is e = 0.75. Suppose that (VA)1 = 6 m/s, (VB)₁ = 7 m/s. (Figure 1) Determine the magnitude of the velocity of A just after impact. Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis. Determine the magnitude of the velocity of B just after impact. Determine the angle between the x axis and the velocity of B just after impact, measured clockwise from the positive x axis. (VB)1 B (VA)1 60° Line of impactarrow_forwardA hot plane surface is maintained at 100°C, and it is exposed to air at 25°C.The combined heat transfer coefficient between the surface and the air is 25W/m²·K. (same as above). In this task, you are asked to design fins to cool asurface by attaching 3 cm-long, 0.25 cm-diameter aluminum pin fins (thermalconductivity, k = 237 W/m·K) with a center-to-center distance of 0.6 cm. (Tip:do not correct the length). Determine the rate of heat transfer from thefinned structure to the air for a 1 m x 1 m section of the plate.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License