Concept explainers
Determine the specific volume of superheated water vapor at 15 MPa and 350°C using (a) the ideal-gas equation, (b) the generalized compressibility chart, and (c) the steam tables. Also determine the error involved in the first two cases.
(a)
The specific volume of superheated water vapour based on the ideal gas equation.
The error involved.
Answer to Problem 84P
The specific volume of superheated water vapour based on the ideal gas equation is
The error involved is
Explanation of Solution
Write the equation of specific volume of superheated water using ideal gas equation of state.
Here, gas constant is R, pressure and temperature of R-134a are P and T respectively.
Calculate the percentage of error involved.
Here, specific volume at pressure and temperature of 15 MPa and
Conclusion:
Refer to Table A-1, obtain the gas constant, R of water as
Substitute
Thus, the specific volume of superheated water vapour based on the ideal gas equation is
Refer to Table A-6, obtain the value of
Substitute
Thus, the error involved is
(b)
The specific volume of superheated water vapour based on the generalized compressibility chart.
The error involved.
Answer to Problem 84P
The specific volume of superheated water vapour based on the generalized compressibility chart is
The error involved is
Explanation of Solution
Calculate the reduced pressure.
Here, pressure of superheated water vapour is P and critical pressure is
Calculate the reduced temperature.
Here, temperature of superheated water vapor is T and critical temperature is
Calculate the specific volume of superheated water vapour based on the generalized compressibility chart.
Here, the specific volume at ideal condition is
Conclusion:
Refer to Table A-1, obtain the critical pressure and critical temperature of water.
Substitute 22.06 MPa for
Substitute 647.1 K for
Refer to figure A-15, “The compressibility chart”, obtain the compressibility factor, Z by reading the calculated reduced pressure and reduced temperature as 0.65.
Substitute 0.65 for Z and
Thus, the specific volume of superheated water vapour based on the generalized compressibility chart is
Substitute
Thus, the error involved is
(c)
The specific volume of superheated water vapour based on the data from tables.
Answer to Problem 84P
The specific volume of superheated water vapour based on the data from table is
Explanation of Solution
Refer to Table A-6, obtain the specific volume at pressure and temperature of 15 MPa and
Thus, the specific volume of superheated water vapour based on data from steam tables is
Want to see more full solutions like this?
Chapter 3 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- University of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forwardSolve using graphical method and analytical method, only expert should solvearrow_forwardSolve this and show all of the workarrow_forward
- Y F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forwardProblem 1 8 in. in. PROBLEM 15.109 Knowing that at the instant shown crank BC has a constant angular velocity of 45 rpm clockwise, determine the acceleration (a) of Point A, (b) of Point D. 8 in. Answer: convert rpm to rad/sec first. (a). -51.2j in/s²; (b). 176.6 i + 50.8 j in/s²arrow_forwardProblem 4 The semicircular disk has a radius of 0.4 m. At one instant, when 0-60°, it is rotating counterclockwise at 0-4 rad/s, which is increasing in the same direction at 1 rad/s². Find the velocity and acceleration of point B at this instant. (Suggestion: Set up relative velocity and relative acceleration that way you would for a no-slip disk; remember what I told you to memorize on the first day of class.) (Answer: B = −2.98î - 0.8ĵ m/s, ãB = 2.45î - 5.74ĵ m/s²) B 0.4 m y Xarrow_forward
- A C C 2r A 2r B B (a) (b) Problem 3 Refer to (b) of the figure shown above. The disk OA is now rolling with no slip at a constant angular velocity of w. Find the angular velocity and angular acceleration of link AB and BC. (Partial Answers: WBC = 2wk, AB = w²k)arrow_forwardProblem 2 Refer to (a) of the figure shown below, where the disk OA rotates at a constant angular velocity of w. Find the angular velocity and angular acceleration of link AB and link BC. (Partial Answers: WBC = wk, AB = w²k) A 2r C B (a) A 2r B (b)arrow_forwardExample Two rotating rods are connected by slider block P. The rod attached at A rotates with a constant clockwise angular velocity WA. For the given data, determine for the position shown (a) the angular velocity of the rod attached at B, (b) the relative velocity of slider block P with respect to the rod on which it slides. b = 8 in., w₁ = 6 rad/s. Given: b = 8 in., WA = 6 rad/s CW constant Find: (a). WBE (b). Vp/Frame E 60° 20° Barrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY