THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.8, Problem 54P
Superheated water vapor at 180 psia and 500°F is allowed to cool at constant volume until the temperature drops to 250°F. At the final state, determine (a) the pressure, (b) the quality, and (c) the enthalpy. Also, show the process on a T-v diagram with respect to saturation lines.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q2/ A piston-cylinder device contains steam initially at 1 MPa,
450°C, and 2.5 m3. Steam is allowed to cool at constant
pressure until it first starts condensing. Show the process on a
T-v diagram with respect to saturation lines and determine:
(a) the mass of the steam, (b) the final temperature, and
(c) the amount of heat transfer.
Water initially at 200 kPa and 300°C is contained in a piston-cylinder device fitted
with stops. The water is allowed to cool at constant pressure until it exists as a saturated vapor
and the piston rests on the stops. Then the water continues to cool until the pressure is 100 kPa.
On the T-u diagram sketch, with respect to the saturation lines, the process curves passing
through both the initial, intermediate, and final states of the water. Label the T, P and v values
for end states on the process curves. Find the overall change in internal energy between the
initial and final states per unit mass of water.
Water
200 kPa
300°C
(9)A piston-cylinder device initially contains steam at 5 MPa and 450°C.
Now, steam loses heat to the surroundings and the piston moves down
hitting a set of stops at which point the cylinder contains saturated vapor
water. The cooling continues until the cylinder contains water at 180°C.
Show the process on a T-v diagram with respect to saturation lines showing
the three states it passes through. Also, put the values of temperature,
pressure and specific volume for each state on the figure.
Steam
Chapter 3 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 3.8 - A propane tank is filled with a mixture of liquid...Ch. 3.8 - Is iced water a pure substance? Why?Ch. 3.8 - What is the difference between saturated vapor and...Ch. 3.8 - What is the difference between saturated liquid...Ch. 3.8 - If the pressure of a substance is increased during...Ch. 3.8 - Is it true that water boils at higher temperature...Ch. 3.8 - What is the difference between the critical point...Ch. 3.8 - A househusband is cooking beef stew for his family...Ch. 3.8 - How does a boiling process at supercritical...Ch. 3.8 - What is quality? Does it have any meaning in the...
Ch. 3.8 - Does the amount of heat absorbed as 1 kg of...Ch. 3.8 - Does the reference point selected for the...Ch. 3.8 - What is the physical significance of hfg? Can it...Ch. 3.8 - Does hfg change with pressure? How?Ch. 3.8 - Is it true that it takes more energy to vaporize 1...Ch. 3.8 - Which process requires more energy: completely...Ch. 3.8 - In what kind of pot will a given volume of water...Ch. 3.8 - It is well known that warm air in a cooler...Ch. 3.8 - In the absence of compressed liquid tables, how is...Ch. 3.8 - A perfectly fitting pot and its lid often stick...Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - A 1.8-m3 rigid tank contains steam at 220C....Ch. 3.8 - One pound-mass of water fills a container whose...Ch. 3.8 - A pistoncylinder device contains 0.85 kg of...Ch. 3.8 - 10 kg of R-134a fill a 1.115-m3 rigid container at...Ch. 3.8 - What is the specific internal energy of water at...Ch. 3.8 - What is the specific volume of water at 5 MPa and...Ch. 3.8 - What is the specific volume of R-134a at 20C and...Ch. 3.8 - Refrigerant-134a at 200 kPa and 25C flows through...Ch. 3.8 - One kilogram of R-134a fills a 0.14-m3 weighted...Ch. 3.8 - One kilogram of water vapor at 200 kPa fills the...Ch. 3.8 - The temperature in a pressure cooker during...Ch. 3.8 - How much error would one expect in determining the...Ch. 3.8 - Water is to be boiled at sea level in a...Ch. 3.8 - Repeat Prob. 340 for a location at an elevation of...Ch. 3.8 - 10 kg of R-134a at 300 kPa fills a rigid container...Ch. 3.8 - 100 kg of R-134a at 200 kPa are contained in a...Ch. 3.8 - Water initially at 200 kPa and 300C is contained...Ch. 3.8 - Saturated steam coming off the turbine of a steam...Ch. 3.8 - A person cooks a meal in a 30-cm-diameter pot that...Ch. 3.8 - Water is boiled at 1 atm pressure in a...Ch. 3.8 - Repeat Prob. 347 for a location at 2000-m...Ch. 3.8 - Prob. 49PCh. 3.8 - A rigid tank with a volume of 1.8 m3 contains 40...Ch. 3.8 - A pistoncylinder device contains 0.005 m3 of...Ch. 3.8 - A 5-ft3 rigid tank contains a saturated mixture of...Ch. 3.8 - Superheated water vapor at 180 psia and 500F is...Ch. 3.8 - One kilogram of water fills a 150-L rigid...Ch. 3.8 - 10 kg of R-134a fill a 0.7-m3 weighted...Ch. 3.8 - A pistoncylinder device contains 0.6 kg of steam...Ch. 3.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 3.8 - Water is being heated in a vertical pistoncylinder...Ch. 3.8 - A rigid tank initially contains 1.4 kg saturated...Ch. 3.8 - A pistoncylinder device initially contains 50 L of...Ch. 3.8 - The spring-loaded pistoncylinder device shown in...Ch. 3.8 - A pistoncylinder device initially contains steam...Ch. 3.8 - Under what conditions is the ideal-gas assumption...Ch. 3.8 - What is the difference between mass and molar...Ch. 3.8 - Propane and methane are commonly used for heating...Ch. 3.8 - What is the specific volume of oxygen at 25 psia...Ch. 3.8 - A 100-L container is filled with 1 kg of air at a...Ch. 3.8 - A mass of 1 lbm of argon is maintained at 200 psia...Ch. 3.8 - A 400-L rigid tank contains 5 kg of air at 25C....Ch. 3.8 - The pressure gage on a 2.5-m3 oxygen tank reads...Ch. 3.8 - A spherical balloon with a diameter of 9 m is...Ch. 3.8 - Reconsider Prob. 373. Using appropriate software,...Ch. 3.8 - A 1-m3 tank containing air at 10C and 350 kPa is...Ch. 3.8 - A mass of 10 g of oxygen fill a weighted...Ch. 3.8 - A mass of 0.1 kg of helium fills a 0.2 m3 rigid...Ch. 3.8 - A rigid tank whose volume is unknown is divided...Ch. 3.8 - A rigid tank contains 20 lbm of air at 20 psia and...Ch. 3.8 - In an informative article in a magazine it is...Ch. 3.8 - What is the physical significance of the...Ch. 3.8 - Determine the specific volume of refrigerant-134a...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of nitrogen gas at...Ch. 3.8 - Prob. 88PCh. 3.8 - Carbon dioxide gas enters a pipe at 3 MPa and 500...Ch. 3.8 - Prob. 90PCh. 3.8 - A 0.016773-m3 tank contains 1 kg of...Ch. 3.8 - Prob. 92PCh. 3.8 - What is the percentage of error involved in...Ch. 3.8 - What is the physical significance of the two...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - A 3.27-m3 tank contains 100 kg of nitrogen at 175...Ch. 3.8 - Nitrogen at 150 K has a specific volume of...Ch. 3.8 - A 1-m3 tank contains 2.841 kg of steam at 0.6 MPa....Ch. 3.8 - Prob. 103PCh. 3.8 - Prob. 104PCh. 3.8 - On a certain day, the temperature and relative...Ch. 3.8 - Prob. 106PCh. 3.8 - Consider two rooms that are identical except that...Ch. 3.8 - A thermos bottle is half-filled with water and is...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Prob. 111RPCh. 3.8 - Prob. 112RPCh. 3.8 - The gage pressure of an automobile tire is...Ch. 3.8 - A tank contains argon at 600C and 200 kPa gage....Ch. 3.8 - The combustion in a gasoline engine may be...Ch. 3.8 - Prob. 116RPCh. 3.8 - Prob. 117RPCh. 3.8 - A rigid tank with a volume of 0.117 m3 contains 1...Ch. 3.8 - A 9-m3 tank contains nitrogen at 17C and 600 kPa....Ch. 3.8 - A 10-kg mass of superheated refrigerant-134a at...Ch. 3.8 - A 4-L rigid tank contains 2 kg of saturated...Ch. 3.8 - Prob. 123RPCh. 3.8 - A tank whose volume is unknown is divided into two...Ch. 3.8 - Prob. 125RPCh. 3.8 - A tank contains helium at 37C and 140 kPa gage....Ch. 3.8 - Prob. 127RPCh. 3.8 - On the property diagrams indicated below, sketch...Ch. 3.8 - Ethane at 10 MPa and 100C is heated at constant...Ch. 3.8 - Steam at 400C has a specific volume of 0.02 m3/kg....Ch. 3.8 - Consider an 18-m-diameter hot-air balloon that,...Ch. 3.8 - Prob. 135FEPCh. 3.8 - A 3-m3 rigid vessel contains steam at 2 MPa and...Ch. 3.8 - Prob. 137FEPCh. 3.8 - Water is boiled at 1 atm pressure in a coffeemaker...Ch. 3.8 - Prob. 139FEPCh. 3.8 - Water is boiled in a pan on a stove at sea level....Ch. 3.8 - A rigid tank contains 2 kg of an ideal gas at 4...Ch. 3.8 - The pressure of an automobile tire is measured to...Ch. 3.8 - Consider a sealed can that is filled with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water initially at 200 kPa and 300°C is contained in a piston–cylinder device fitted with stops. The water is allowed to cool at constant pressure until it exists as a saturated vapor and the piston rests on the stops. Then the water continues to cool until the pressure is 100 kPa. On the T-v diagrams sketch, with respect to the saturation lines, the process curves pass through both the initial, intermediate, and final states of the water. Label the T, P and v values for end states on the process curves. Find the overall change in internal energy between the initial and final states per unit mass of water.arrow_forwardpiston eylinder device contains 0.8 kg of steam at 300°C and 1 MPa Steam is cooled at constant pressure until one-half of the mass condenses. (a) Show the process on a T-v diagram. (b) Find the final temperature. () Determine the volume change.arrow_forwardA 20-ft3 rigid tank initially contains saturated refrigerant- 134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. Show the process on a P-v diagram with respect to saturation lines and determine (a) the final temperature, (b) the amount of refrigerant that has condensed, and (c) the heat transfer.arrow_forward
- (a) A piston-cylinder device (2 m) initially contains water at 300 kPa with 60% quality. Heat is transferred to the water at constant pressure until the volume of the piston- cylinder is triples. (i) Determine the enthalpy change of this process (kJ/kg). (ii) Sketch the process in a T-v diagram with respect to the saturation lines. (b) Arigid tank is divided into two parts by a partition. One side of the tank contains 2 kg of ideal gas at 627°C and 300 kPa. The other side of the tank is evacuated and the volume is one-half the size of the part containing the ideal gas. The gas expands to fill the entire tank when the partition is removed. Heat is supply to the gas until the temperature increased to 1500°C. Calculate the final pressure of the gas (kPa).arrow_forwardWater initially at 300 kPa and 250°C is contained in a constant-volume tank. The water is allowed to cool until its pressure is 150 kPa. On the P-v and T-v diagrams, sketch, with respect to the saturation lines, the process curve passing through both the initial and final states of the water. Label the end states on the process curve. Also, on both the P-v and T-v diagrams, sketch the isotherms passing through both states and show their values, in °C, on the isothermsarrow_forwardplease include all stepsarrow_forward
- When a system that use refrigerant-134a at temperature of 95 C at pressure of 1.4 kPa is cooled at constant volume until the pressure is being reduced to 1.15 kPa. (a) Show the process on a T-v diagram with respect to saturation lines. (b) Determine the change in volume. (c) Find the change in total internal energy.arrow_forwardA piston–cylinder device initially contains 50 L of liquid water at 40°C and 200 kPa. Heat istransferred to the water at constant pressure until the entire liquid is vaporized. i. What is the mass of the water?ii. What is the final temperature?iii. Determine the total enthalpy change.iv. Show the process on a T-v diagram with respect to saturation lines.arrow_forwardA piston-cylinder device initially contains 50 L of liquid water at 60°C and 250 kPa. Heat is transferred to the water at constant pressure until entire liquid is vaporized. Determine: i. The mass of the water ii. The final temperature The total enthalpy change iii. Also show the process on T-v diagram with respect to saturation lines.arrow_forward
- A piston-cylinder device initially contains 1 kg saturated liquid water at 220°C. Now heat is transferred to the water until the volume expands quadruple of its initial volume. Eventually, the cylinder contains saturated vapor only. Determine the volume at the final stage. (i) (ii) Determine the final temperature and pressure. (iii) Determine the internal energy change of the water. (iv) Sketch the T-v diagram and include all the related information.arrow_forwardA piston–cylinder device contains 0.8 kg of steam at 300°C and 1 MPa. Steam iscooled at constant pressure until one-half of the mass condenses. (a) Show the processon a T-v diagram. (b) Find the final temperature. (c) Determine the volume change.arrow_forwardA rigid tank contains 1.2 kg of R-410A at 500 kPa and 20°C. The tank is now placed in a freezer where the temperature of the R-410A drops to -30°C. (a) What is the final pressure of the R-410A in the cylinder? (b) Show the process on a P-v diagram, including lines of constant temperature. Label all values of P, v and T on the diagram. (c) Calculate the total work done and the heat transfer for the process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license