Consider a light wave passing through a slit and propagating toward a distant screen. Figure P37.53 shows the intensity variation for the pattern on the screen. Give a mathematical argument that more than 90% of the transmitted energy is in the central maximum of the diffraction pattern. Suggestion: You are not expected to calculate the precise percentage, but explain the steps of your reasoning. You may use the identification 1 1 2 + 1 3 2 + 1 5 2 + ⋯ = π 2 8 Figure P37.53
Consider a light wave passing through a slit and propagating toward a distant screen. Figure P37.53 shows the intensity variation for the pattern on the screen. Give a mathematical argument that more than 90% of the transmitted energy is in the central maximum of the diffraction pattern. Suggestion: You are not expected to calculate the precise percentage, but explain the steps of your reasoning. You may use the identification 1 1 2 + 1 3 2 + 1 5 2 + ⋯ = π 2 8 Figure P37.53
Solution Summary: The author explains that the energy in the central maximum is 90% of the total transmitted light through the slit.
Consider a light wave passing through a slit and propagating toward a distant screen. Figure P37.53 shows the intensity variation for the pattern on the screen. Give a mathematical argument that more than 90% of the transmitted energy is in the central maximum of the diffraction pattern. Suggestion: You are not expected to calculate the precise percentage, but explain the steps of your reasoning. You may use the identification
A skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so
that his center of mass moves through one quarter of a circle of radius 6.20 m.
i
(a) Find his speed at the bottom of the half-pipe (point Ⓡ).
m/s
(b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he
passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ?
]
(c) How high above point ① does he rise?
m
A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical.
(a) Neglecting friction, find the child's speed at the lowest position.
m/s
(b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction?
]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.