A pinhole camera has a small circular aperture of diameter D . Light from distant objects passes through the aperture into an otherwise dark box, falling on a screen located a distance L away. If D is too large, the display on the screen will be fuzzy because a bright point in the field of view will send light onto a circle of diameter slightly larger than D . On the other hand, if D is too small, diffraction will blur the display on the screen. The screen shows a reasonably sharp image if the diameter of the central disk of the diffraction pattern, specified by Equation 37.6, is equal to D at the screen. (a) Show that for monochromatic light with plane wave fronts and L >> D , the condition for a sharp view is fulfilled if D 2 = 2.44 λL . (b) Find the optimum pinhole diameter for 500-nm light projected onto a screen 15.0 cm away.
A pinhole camera has a small circular aperture of diameter D . Light from distant objects passes through the aperture into an otherwise dark box, falling on a screen located a distance L away. If D is too large, the display on the screen will be fuzzy because a bright point in the field of view will send light onto a circle of diameter slightly larger than D . On the other hand, if D is too small, diffraction will blur the display on the screen. The screen shows a reasonably sharp image if the diameter of the central disk of the diffraction pattern, specified by Equation 37.6, is equal to D at the screen. (a) Show that for monochromatic light with plane wave fronts and L >> D , the condition for a sharp view is fulfilled if D 2 = 2.44 λL . (b) Find the optimum pinhole diameter for 500-nm light projected onto a screen 15.0 cm away.
Solution Summary: The author explains that the condition of sharp view for monochromatic light with plane wave fronts is fulfilled when D2=2.44lambda L.
A pinhole camera has a small circular aperture of diameter D. Light from distant objects passes through the aperture into an otherwise dark box, falling on a screen located a distance L away. If D is too large, the display on the screen will be fuzzy because a bright point in the field of view will send light onto a circle of diameter slightly larger than D. On the other hand, if D is too small, diffraction will blur the display on the screen. The screen shows a reasonably sharp image if the diameter of the central disk of the diffraction pattern, specified by Equation 37.6, is equal to D at the screen. (a) Show that for monochromatic light with plane wave fronts and L >> D, the condition for a sharp view is fulfilled if D2 = 2.44λL. (b) Find the optimum pinhole diameter for 500-nm light projected onto a screen 15.0 cm away.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.