Concept explainers
Consider a light wave passing through a slit and propagating toward a distant screen. Figure P37.53 shows the intensity variation for the pattern on the screen. Give a mathematical argument that more than 90% of the transmitted energy is in the central maximum of the diffraction pattern. Suggestion: You are not expected to calculate the precise percentage, but explain the steps of your reasoning. You may use the identification
Figure P37.53
Trending nowThis is a popular solution!
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- When an x-ray beam is scattered off the planes of a crystal, the scattered beam creates an interference pattern. This phenomenon is called Bragg scattering. For an observer to measure an interference maximum, two conditions have to be satisfied: 1. The angle of incidence has to be equal to the angle of reflection. 2. The difference in the beam's path from a source to an observer for neighboring planes has to be equal to an integer multiple of the wavelength; that is, 2d sin(0) = mx for m = 1, 2, .... The path difference 2d sin(0) can be determined from the diagram (Figure 1). The second condition is known as the Bragg condition. Figure 1 of 1 d sine d sine Review nstants Part A An x-ray beam with wavelength 0.260 nm is directed at a crystal. As the angle of incidence increases, you observe the first strong interference maximum at an angle 20.5 °. What is the spacing d between the planes of the crystal? Express your answer in nanometers to four significant figures. VE ΑΣΦ ? d = nm…arrow_forwardThe pupil of an eagle's eye has a diameter of 6.0 mm. Two field mice are separated by 0.010 m. From a distance of 166 m, the eagle sees them as one unresolved object and dives toward them at a speed of 24 m/s. Assume that the eagle's eye detects light that has a wavelength of 550 nm in vacuum. How much time passes until the eagle sees the mice as separate objects? t= i eTextbook and Mediaarrow_forwardDiffraction can be used to provide a quick test of the size of red blood cells. Blood is smeared onto a slide, and a laser shines through the slide. The size of the cells is very consistent, so the multiple diffraction patterns overlap and produce an overall pattern that is similar to what a single cell would produce. Ideally, the diameter of a red blood cell should be between 7.5 and 8.0 μm. If a 633 nm laser shines through a slide and produces a pattern on a screen 24.0 cm distant, what range of sizes of the central maximum should be expected? Values outside this range might indicate a health concern and warrant further study.arrow_forward
- Light of several wavelengths strikes a thin film of index 1.4. The thickness of the thin film is 320 nm and sits on awater, which has an index of refraction of 1.33. Which wavelength will produce the least reflected light: 440 nm or580 nm? Include a diagram. Clearly outline the steps of your thought process. This is a old study question that I am stuck on.arrow_forwardThe table contains data obtained during the single-slit microwave experiment with a slit width of 7 cm and a wavelength of 2.8 cm. To compare data like this with theory in Sec. 8.5, you will have to normalize both the intensity and the angular data. A. What is the normalized intensity I/I0 at 40∘? B. What is the normalized angle β/π at 25∘?arrow_forwardFirst-order Bragg scattering from a certain crystal occurs at an angle of incidence of 63.8°; see figure below. The wavelength of the x-rays is 0.261nm. Assuming that the scattering is from the dashed planes shown, find the unit cell size ao. 63.8° X raysarrow_forward
- In the lab, you want to use a spectrometer to study the emission spectrum of a gas. This device works by having the light go through a diffraction grating and then carefully measuring the angle at which the light exits the grating. The problem is that the grating that you have is not labeled, so you do not know the spacing. To calibrate the spectrometer, you send a HeNe laser (wavelength 632.8nm) through the grating and observe it to exit at an angle of 37.6° in the second order by this grating. (For obscure technical reasons, the first order is not observable.) Light from the gas is then measured to be deflected by 34.9° in the second order. What is the wavelength of the light that is to be measured?arrow_forwardQ1/ A/ Consider a resonator consisting of two concave spherical mirrors both with radius of curvature 4 m and separated by a distance of 1 m. Calculate the minimum beam diameter of the TEMy mode at the resonator center and on the mirrors when the laser oscillation is Art laser wavelength 2=514.5 nm. Then, Find if this cavity is stable or not. B/ One of the mirrors in A is replaced by a concave mirror of 1.5m radius of curvature, calculate the position of minimum beam radius. Then calculate the beam waist and radius of curvature at 150 cm from M1.arrow_forwardAccording to the principles of quantum mechanics, every particle acts like a wave. To demonstrate this, a helium nucleus is shown to exhibit interference as it passes through a double-slit. The helium nucleus has a mass of 6.64 x 10^-27 kg and its speed is 500.0 m/s when is passes through the slits. a. What is the wavelength of the wave associated with the helium nucleus in nanometers? b. If the slits are seperated by 1.00 nm and the distance from the slits to the detector (effectively, the "screen") is 15.0 cm, what is the distance, in centimeters, from the central maximum to the first-order maximum of constructive interference? c. If the uncertainty in the velocity of the helium nucleus is 18 m/s, what is the uncertainty in its position, assuming a simultaneous measurement?arrow_forward
- An x-ray was used to examine a sample of chromium having a BCC crystal structure.Using x-rays having a wavelength of 0.1682 nm, a diffractometer is used. The distorting (010) aircraft is the plane. Chromium has an atomic radius of 0.125 nm. A)Compute the interplanar spacing and Calculate the diffraction angle. Assume second-order of diffraction, n = 2.arrow_forwardThe spacing between principal planes in a NaCl crystal is 2.82x10^-10 m. It is found that a first order Bragg reflection of a monochromatic X-ray beam occurs at an angle of 10°. From this information we can say that the wavelength λ of the X-rays and the angle θ2 corresponding to the second-order spectrum are:Choose an answer between the letters A and D from the image below and justify your answerarrow_forwardIn the figure, first-order reflection from the reflection planes shown occurs when an x-ray beam of wavelength 0.820 nm makes an angle θ = 62.3˚ with the top face of the crystal. What is the unit cell size a0?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning