
EBK USING MIS
10th Edition
ISBN: 8220103633635
Author: KROENKE
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Expert Solution & Answer
Chapter 3.8, Problem 3.7ARQ
Explanation of Solution
Eight principles of competitive advantage:
Eight principles of competitive advantage have been categorized into product implementations and process implementations.
Applications:
Product Implementations:
- Create new products or services
- To offer new products or services to the customer this is better than the competitor’s product.
- Enhancing products or services
- Improving the currently offering products by implementing the upcoming ideas.
- Differentiating products or services
- Making the products stand in the market by implementing upcoming ideas.
Process Implementations:
- Lock in customers and buyers
- Holding the customers and buyers to buy their products by providing good customer service and fulfilling the wishes and needs of the customer
- Lock in suppliers
- Holding the suppliers on their side makes them always available and ready to help.
- Raising the barriers to market entry
- Making some barriers, this will create a difficulty in startup business.
- Establishing alliances
- Making tie up other business partners will help them succeed in their business.
- Cost reduction
- Reducing the rate of the product will make them offer products or service at a cheaper rate.
Examples:
Product Implementations:
- Create new products or services
- The bookstore can achieve this strategy by tracking the books, which are offered to the student by using the
information system ...
- The bookstore can achieve this strategy by tracking the books, which are offered to the student by using the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place.
My code:
% Define frequency range for the plot
f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz
w = 2 * pi * f; % Angular frequency
% Parameters for the filters - let's adjust these to get more reasonable cutoffs
R = 1e3; % Resistance in ohms (1 kΩ)
C = 1e-6; % Capacitance in farads (1 μF)
% For bandpass, we need appropriate L value for desired cutoffs
L = 0.1; % Inductance in henries - adjusted for better bandpass response
% Calculate cutoff frequencies first to verify they're in desired range
f_cutoff_RC = 1 / (2 * pi * R * C);
f_resonance = 1 / (2 * pi * sqrt(L * C));
Q_factor = (1/R) * sqrt(L/C);
f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor));
f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor));
% Transfer functions
% Low-pass filter (RC)
H_low = 1 ./ (1 + 1i * w *…
My code is experincing minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place.
My code:
% Define frequency range for the plot
f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz
w = 2 * pi * f; % Angular frequency
% Parameters for the filters - let's adjust these to get more reasonable cutoffs
R = 1e3; % Resistance in ohms (1 kΩ)
C = 1e-6; % Capacitance in farads (1 μF)
% For bandpass, we need appropriate L value for desired cutoffs
L = 0.1; % Inductance in henries - adjusted for better bandpass response
% Calculate cutoff frequencies first to verify they're in desired range
f_cutoff_RC = 1 / (2 * pi * R * C);
f_resonance = 1 / (2 * pi * sqrt(L * C));
Q_factor = (1/R) * sqrt(L/C);
f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor));
f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor));
% Transfer functions
% Low-pass filter (RC)
H_low = 1 ./ (1 + 1i * w *…
I would like to know the main features about the following three concepts:
1. Default forwarded
2. WINS Server
3. IP Security (IPSec).
Chapter 3 Solutions
EBK USING MIS
Ch. 3.3 - Prob. 1EGDQCh. 3.3 - Prob. 2EGDQCh. 3.3 - Prob. 3EGDQCh. 3.3 - Prob. 4EGDQCh. 3.7 - Prob. 1TARQCh. 3.7 - Prob. 2TARQCh. 3.7 - Prob. 3TARQCh. 3.7 - Prob. 4TARQCh. 3.8 - Prob. 1SGDQCh. 3.8 - Prob. 2SGDQ
Ch. 3.8 - Prob. 3SGDQCh. 3.8 - Prob. 4SGDQCh. 3.8 - Prob. 3.1ARQCh. 3.8 - Prob. 3.2ARQCh. 3.8 - Prob. 3.3ARQCh. 3.8 - Prob. 3.4ARQCh. 3.8 - Prob. 3.5ARQCh. 3.8 - Prob. 3.6ARQCh. 3.8 - Prob. 3.7ARQCh. 3.8 - Prob. 3.8ARQCh. 3 - Prob. 3.1UYKCh. 3 - Prob. 3.2UYKCh. 3 - Prob. 3.3UYKCh. 3 - Prob. 3.1CE3Ch. 3 - Prob. 3.4CS3Ch. 3 - Prob. 3.5CS3Ch. 3 - Prob. 3.6CS3Ch. 3 - Prob. 3.7CS3Ch. 3 - Prob. 3.8CS3Ch. 3 - Prob. 3.9CS3Ch. 3 - Prob. 3.10CS3Ch. 3 - Prob. 3.11CS3Ch. 3 - Prob. 3.12CS3Ch. 3 - Prob. 3.13MMLCh. 3 - Prob. 3.14MMLCh. 3 - Prob. 3.15MML
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- map the following ER diagram into a relational database schema diagram. you should take into account all the constraints in the ER diagram. Underline the primary key of each relation, and show each foreign key as a directed arrow from the referencing attributes (s) to the referenced relation. NOTE: Need relational database schema diagramarrow_forwardWhat is business intelligence? Share the Business intelligence (BI) tools you have used and explain what types of decisions you made.arrow_forwardI need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forward
- Task 3. i) Compare your results from Tasks 1 and 2. j) Repeat Tasks 1 and 2 for 500 and 5,000 elements. k) Summarize run-time results in the following table: Time/size n String StringBuilder 50 500 5,000arrow_forwardCan you please solve this without AIarrow_forward1. Create a Vehicle.java file. Implement the public Vehicle and Car classes in Vehicle.java, including all the variables and methods in the UMLS. Vehicle - make: String model: String -year: int + Vehicle(String make, String, model, int, year) + getMake(): String + setMake(String make): void + getModel(): String + setModel(String model): void + getYear(): int + set Year(int year): void +toString(): String Car - numDoors: int + numberOfCar: int + Car(String make, String, model, int, year, int numDoors) + getNumDoors(): int + setNumDoors (int num Doors): void + toString(): String 2. Create a CarTest.java file. Implement a public CarTest class with a main method. In the main method, create one Car object and print the object using System.out.println(). Then, print the numberOfCar. Your printing result must follow the example output: make Toyota, model=Camry, year=2022 numDoors=4 1 Hint: You need to modify the toString methods in the Car class and Vehicle class!arrow_forward
- CHATGPT GAVE ME WRONG ANSWER PLEASE HELParrow_forwardHELP CHAT GPT GAVE ME WRONG ANSWER Consider the following implementation of a container that will be used in a concurrent environment. The container is supposed to be used like an indexed array, but provide thread-safe access to elements. struct concurrent_container { // Assume it’s called for any new instance soon before it’s ever used void concurrent_container() { init_mutex(&lock); } ~concurrent_container() { destroy_mutex(&lock); } // Returns element by its index. int get(int index) { lock.acquire(); if (index < 0 || index >= size) { return -1; } int result = data[index]; lock.release(); return result; } // Sets element by its index. void set(int index, int value) { lock.acquire(); if (index < 0 || index >= size) { resize(size); } data[index] = value; lock.release(); } // Extend maximum capacity of the…arrow_forwardWrite a C program using embedded assembler in which you use your own function to multiply by two without using the product. Tip: Just remember that multiplying by two in binary means shifting the number one place to the left. You can use the sample program from the previous exercise as a basis, which increments a variable. Just replace the INC instruction with SHL.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Information SystemsComputer ScienceISBN:9781305082168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningManagement Of Information SecurityComputer ScienceISBN:9781337405713Author:WHITMAN, Michael.Publisher:Cengage Learning,
- Principles of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningPrinciples of Information Systems (MindTap Course...Computer ScienceISBN:9781305971776Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningPrinciples of Information Security (MindTap Cours...Computer ScienceISBN:9781337102063Author:Michael E. Whitman, Herbert J. MattordPublisher:Cengage Learning

Fundamentals of Information Systems
Computer Science
ISBN:9781305082168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning

Management Of Information Security
Computer Science
ISBN:9781337405713
Author:WHITMAN, Michael.
Publisher:Cengage Learning,

Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning

Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781305971776
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning

Principles of Information Security (MindTap Cours...
Computer Science
ISBN:9781337102063
Author:Michael E. Whitman, Herbert J. Mattord
Publisher:Cengage Learning